40 no. com

Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 10th Real Number Unsolved Paper

Click Button Below To Buy Solution

BUY NOW WITH PayUmoney

Only ₹ 25

OR
Call us on 9557655662 for Paytm or UPI / NEFT payment

CBSE $10^{\text {th }}$ Real Number Unsolved Paper

Question 1:

Use Euclid's division algorithm to find the HCF of:
(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 225

Question 2:

Use Euclid's division lemma to show that the square of any positive integer is either of form $3 m$ or $3 m+1$ for some integer m.

Hint: let \boldsymbol{x} be any positive integer then it is of the form $\mathbf{3 q}, \mathbf{3 q}+1$ or $\mathbf{3 q}+\mathbf{2}$.
[Now square each of these and show that they can be rewriteen in the fomr $\mathbf{3 m}$ or $\mathbf{3 m}+1$]

Question 3:

Use Euclid's division lemma to show that the cube of any positive integer is of the form $\mathbf{9 m}$, $9 m+1$ or $9 m+8$.

Question 4:

Find the LCM and HCF of the following pairs of integers and verify that
$\mathbf{L C M} \times \mathbf{H C F}=$ product of the two numbers.
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54

Question 5:

Find the LCM and HCF of the following integers by applying the prime factorization method.
(i) 12,15 and 21
(ii) 17,23 and 29
(iii) 8,9 and 25

Question 6:

Prove that $\sqrt{5}$ is irrational.

Question 7:

Prove that $3+2 \sqrt{5}$ is irrational.

Question 8:

Prove that the following are irrationals:
(i) $\frac{1}{\sqrt{2}}$
(ii) $7 \sqrt{5}$
(iii) $6+\sqrt{2}$

Question 9:

Show that any positive odd integer is of the form $\mathbf{6 q}+1$ or, $6 q+3 o r, 6 q+$ 5 , where q is some integer.

Question 10:
Prove that the square of any positive integer is of the form $\mathbf{4 q}$ or $\mathbf{4 q}+\mathbf{1}$ for some integer q.
Q. 11 Prove that if a positive integer is of the form $\mathbf{6 q}+5$, then it is of the form $\mathbf{3 q}+\mathbf{2}$ for some integer q, but not conversely.
Q. 12 Prove that the product of three consecutive positive integer is divisible by 6.
Q.13 For any positive integer n, prove that $\boldsymbol{n}^{\mathbf{3}}-\mathbf{n}$ divisible by 6 .
Q. 14 Define HOE of two positive integers and find the HCF of the following pairs of numbers:
(i) 32 and 54
(ii) 18 and 24
(iii) 70 and 30
(iv) 56 and 88
(v) 475 and 495
Q. 15 Use Euclid's division algorithm to find the HCF of
(i) $\mathbf{1 3 5}$ and 225 (ii) 196 and 38220
Q. 17 If the HCF of 408 and 1032 is expressible in the form $1032 \mathrm{~m}-408 \times 5$, find m .
Q. 18 If the HCF of 657 and 963 is expressible in the form $657 x+963 x-15$, find x.
Q. 19 Find the largest number which divides 615 and 963 leaving remainder 6 in each case.
Q. 20 Find the greatest number which divides 285 and 1249 leaving remainders 9 and 7 respectively.
Q. 21 Find the largest number which exactly divides 280 and 1245 leaving remainders 4 and 3 , respectively.

Click Button Below To Buy Solution

BUY NOW WITH PayUmoney

Only ₹ 25

OR
Call us on 9557655662 for Paytm or UPI / NEFT payment

