40no.com

Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 10th Mathematics 2016 Solved Paper
 All India

Download from www.4ono.com DEMO VERSION

Note

This pdf file is downloaded from www.4ono.com. Editing the content or publicizing this on any blog or website without the written permission of Rewire Media is punishable, the suffering will be decided

CBSE 10th Mathematics 2016 Solved Paper All India

TIME-3HR. | QUESTIONS-31

SECTION - A

Q.1. In fig. 1, $P Q$ is a tangent at a point C to a circle with centre O. If $A B$ is a diameter and $\angle \mathbf{C A B}=\mathbf{3 0}^{\circ}$, find $\angle \mathbf{P C A}$. I mark

Solution:

Given:
$\angle \mathrm{CAB}=30^{\circ}$

AB is a diameter to the circle with centre O .
$\therefore \angle \mathrm{ACB}=90^{\circ}$

Join OC.

$\therefore \mathrm{OC}=\mathrm{OA}$ (Radii of the circle)
$\angle \mathrm{CAB}=\angle \mathrm{ACO}=30^{\circ}$

We know that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\therefore \angle \mathrm{OCP}=90^{\circ}$

$$
\begin{gathered}
\angle P C A+\angle O C A=90^{\circ} \\
\angle \mathrm{PCA}=90^{\circ}-30^{\circ}=60^{\circ} \\
\therefore \angle P C A=60^{\circ} .
\end{gathered}
$$

Q.2. For what value of k will $k+9,2 k-1$ and $2 k+7$ are the consecutive terms of an

A.P.? 1 mark

Solution:

If a, b and c are in AP, then $2 b=a+c$.
It is given that $k+9,2 k-1$ and $2 k+7$ are in AP.
$\therefore 2(2 k-1)=(k+9)+(2 k+7)$
$\Rightarrow 4 k-2=3 k+16$
$\Rightarrow k=18$
Thus, the value of k is 18 .

Q.3. A ladder, leaning against a wall, makes an angle of 60° with the horizontal. If the foot of the ladder is $\mathbf{2 . 5} \mathbf{~ m}$ away from the wall, find the length of the ladder. .? 1 mark

Solution:

The given information is represented in the figure shown below:

Here, AC is the ladder with length l and AB is the wall.
In $\triangle \mathrm{ABC}$,

$$
\cos 60^{\circ}=\frac{B C}{A C}\left(\because \cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}\right)
$$

$$
\begin{gathered}
\Rightarrow \frac{1}{2}=\frac{2.5}{l} \\
\Rightarrow l=2.5 \times 2=5 \text { metres }
\end{gathered}
$$

Thus, the length of the ladder is 5 metres.

Q. 4 A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen. I mark

Solution:

Out of 52 cards, one card can be drawn in 52 ways.
\therefore Total number of events $=52$
In a pack of 52 playing cards, there are 26 red cards and 26 black cards that include 2 red queens and 2 black queens, respectively.
\therefore Number of cards that are neither red nor queen $=52-(26+2)=24$
\Rightarrow Favourable number of events $=24$
\therefore Required probability $=\frac{24}{52}=\frac{6}{13}$.

SECTION - B

Q.5. If -5 is a root of the quadratic equation $2 x^{2}+p x-15=0$ and the quadratic equation $\boldsymbol{p}\left(\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}\right)+\boldsymbol{k}=\mathbf{0}$ has equal roots, find the value of $\boldsymbol{k} .2$ marks

Solution:

$$
\begin{aligned}
& -5 \text { is a root of the quadratic equation } 2 x^{2}+p x-15=0 . \\
& \therefore 2(-5)^{2}+p(-5)-15=0 \\
& \Rightarrow 50-5 p-15=0 \\
& \Rightarrow 35=5 p \\
& \Rightarrow p=7 \\
& \text { It is given that } p\left(x^{2}+x\right)+k=0 \text {. } \\
& 7\left(x^{2}+x\right)+k=0 \\
& \Rightarrow 7 x^{2}+7 x+k=0 \\
& \text { If the roots are equal then, } D=0 \text {. } \\
& D=b^{2}-4 \text { ac }=0 \\
& \Rightarrow 49-28 k=0 \\
& \Rightarrow 49=28 k \\
& \Rightarrow k=\frac{7}{4} .
\end{aligned}
$$

Q.6. Let P and Q be the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$ such that P is nearer to A. Find the coordinates of P and Q. marks

Solution:

It is given that P and Q are the points of trisection of the line segment joining points $\mathrm{A}(2$, $-2)$ and $B(-7,4)$ such that P is nearer to A. Therefore, P divides the line segment $A B$ internally in the ratio $1: 2$ and Q divides AB internally in the ratio $2: 1$.

Using section formula, we have
Coordinates of P

$$
\begin{aligned}
& =\left(\frac{1 \times(-7)+2 \times 2}{1+2}, \frac{1 \times 4+2 \times(-2)}{1}\right) \\
& =\left(\frac{-7+4}{3}, \frac{4-4}{3}\right) \\
& =(-1,0)
\end{aligned}
$$

Coordinates of Q

$$
\begin{aligned}
& =\left(\frac{2 \times(-7)+1 \times 2}{2+1}, \frac{2 \times 4+1 \times(-2)}{2+1}\right) \\
& =\left(\frac{-14+2}{3}, \frac{8-2}{3}\right) \\
& =(-4,2) .
\end{aligned}
$$

Q.7. In Figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle with centre O in such a way that the sides $A B, B C, C D$ and $D A$ touch the circle at the points P, Q, R and S respectively. Prove that $A B+C D=B C+D A$.

Solution:

We know that the tangents drawn from the exterior point to a circle are equal in length.
So,
From point D, DR = DS
From point $\mathrm{A}, \mathrm{AP}=\mathrm{AS}$
From point $B, B P=B Q$
From point C, CR $=C Q$
Adding (i), (ii), (iii) and (iv), we get
$D R+A P+B P+C R=D S+A S+B Q+C Q$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{AP}+\mathrm{BP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{BQ}+\mathrm{CQ})$
$C D+A B=D A+B C$
$\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}$
Hence proved.

Q.8. Prove that the points $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled isosceles triangle.

Solution:

Let $\mathrm{A}(3,0), \mathrm{B}(6,4)$ and $\mathrm{C}(-1,3)$ be the vertices of the given triangle.
Using distance formula, we have

$$
\begin{gathered}
A B=\sqrt{(4-0)^{2}+(6-3)^{2}}=\sqrt{25}=5 \text { units } \\
A B=\sqrt{(3-4)^{2}+(-1-6)^{2}}=\sqrt{50}=5 \sqrt{2} \text { units } \\
C A=\sqrt{(0-3)^{2}+(3+1)^{2}}=\sqrt{25}=5 \text { units }
\end{gathered}
$$

Now,

$$
\begin{aligned}
& (5)^{2}+(5)^{2}=(5 \sqrt{2})^{2} \\
& \Rightarrow A B^{2}+C A^{2}=B C^{2}
\end{aligned}
$$

$\Rightarrow \triangle \mathrm{ABC}$ is a right-angled triangle, right angled at A .
Also,
$\mathrm{AB}=\mathrm{CA}=5$ units
Therefore, $\triangle \mathrm{ABC}$ is a right-angled isosceles triangle.
Hence, the given points are the vertices of a right-angled isosceles triangle.
Q.9. The 4th term of an A.P. is zero. Prove that the 25 th term of the A.P. is three times its 11th term.

Solution:

Let a and d be the first term and the common difference of the AP, respectively. It is given that $a_{4}=0$.
$\therefore a+3 d=0$
$\Rightarrow a=-3 d$
Now,

$$
a_{25}=a+24 d
$$

$$
\begin{equation*}
\Rightarrow a_{25}=-3 d+24 d=21 d \tag{1}
\end{equation*}
$$

Also,
$a_{11}=a+10 d$

$$
\begin{equation*}
\Rightarrow a_{11}=-3 d+10 d=7 d \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
a_{25}=3 \times a_{11}
$$

Q.10. In Fig. 3, from an external point P, two tangents $P T$ and $P S$ are drawn to a circle with centre O and radius r. 2 marks If $\mathrm{OP}=2 r$, show that $\angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$.

Solution:

Given:
O is the centre and r is the radius of the circle.
PT and PS are tangents to the circle.
$\mathrm{OP}=2 r$

To prove: $\angle O T S=\angle O S T=30^{\circ}$
Proof:
PT and PS are tangents drawn to the circle.
$\therefore \angle O T P=\angle O S P=90^{\circ}$ (Tangent to a circle is perpendicular to the radius through the point of contact.)

In $\triangle \mathrm{OTP}$,

$$
\sin \angle O P T=\frac{O T}{O P}=\frac{r}{2 r}
$$

$$
\begin{aligned}
& \Rightarrow \sin \angle O P T=\frac{1}{2} \\
& \Rightarrow \angle O P T=30^{\circ}
\end{aligned}
$$

Now,
$\angle O T P+\angle O P T+\angle T O P=180^{\circ}($ Angle sum property $)$
$\Rightarrow 90^{\circ}+30^{\circ}+\angle T O P=180^{\circ}$
$\Rightarrow \angle T O P=180^{\circ}-120^{\circ}=60^{\circ}$
\triangle PTS is an isosceles triangle and OP is the angle bisector of $\angle \mathrm{TPS}$

$$
\Rightarrow T S \perp O P
$$

$\therefore \angle O Q T=\angle O Q S=90^{\circ}$
In $\triangle O T Q$,

$$
\begin{aligned}
& \angle O Q T+\angle O T Q+\angle T O Q=180^{\circ} \quad \text { (Angle sum property) } \\
& \Rightarrow 90^{\circ}+\angle O T Q+60^{\circ}=180^{\circ} \Rightarrow \angle O T Q=180^{\circ}-150^{\circ}=30^{\circ}
\end{aligned}
$$

Similarly,

$$
\angle O S Q=30^{\circ}
$$

$$
\therefore \angle O T S=\angle O S T=30^{\circ} .
$$

SECTION - C

Q.11. In fig. $4, O$ is the centre of a circle such that diameter $A B=13 \mathrm{~cm}$ and $A C=12 \mathbf{c m}$. $B C$ is joined. Find the area of the shaded region. (Take $\boldsymbol{\pi}=\mathbf{3 . 1 4}$)

Solution:

It is given that $\mathrm{AB}=13 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$.
We know that angle inscribed in a semicircle is 90°.
$\therefore \angle \mathrm{ACB}=90^{\circ}$
So, $\triangle \mathrm{ABC}$ is a right-angled triangle.
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& A C^{2}+B C^{2}=A B^{2} \\
& \Rightarrow 144+B C^{2}==169 \\
& \Rightarrow B C^{2}==25 \\
& \Rightarrow B C=5 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Area of } \triangle A B C=\frac{1}{2} \times B C \times A C=\frac{1}{2} \times 5 \times 12=30 \mathrm{~cm}^{2}
$$

Radius of the circle, $r=\frac{A B}{2}=\frac{13}{2} \mathrm{~cm}$
Area of semicircle $A C B=\frac{\pi r^{2}}{2}=\frac{3.14}{2} \times \frac{13}{2} \times \frac{13}{2}=66.33 \mathrm{~cm}^{2} \quad$ (Approx.)
\therefore Area of the shaded region $=$ Area of semicircle $A C B-$ Area of $\triangle A C B=66.33-30=$ $36.33 \mathrm{~cm}^{2}$ (Approx.)
Q.12. In the figure, a tent is in the shape of a cylinder surmounted by a conical top of same diameter. If the height and diameter of cylindrical part are 2.1 m and $\mathbf{3 ~ m}$, respectively, and the slant height of conical part is 2.8 m , find the cost of canvas needed to make the tent if the canvas is available at the rate of Rs $500 /$ sq. metre. (Use $\pi=\frac{22}{7}$). 3 marks

Solution:

Canvas needed to make the tent $=$ Curved surface area of the conical part + Curved surface area of the cylindrical part
Radius of the conical part $=$ Radius of the cylindrical part $r=\frac{3}{2} m$
Slant height of the conical part $=1=2.8 \mathrm{~m}$
Height of the cylindrical part $=\mathrm{h}=2.1 \mathrm{~m}$
Curved surface area of the conical part $=\pi r l=\frac{22}{7} \times \frac{3}{2} \times 2.8 \mathrm{~m}^{2}$
Curved surface area of the cylindrical part $=2 \pi r h=2 \times \frac{22}{7} \times \frac{3}{2} \times 2.1 \mathrm{~m}^{2}$
\therefore Total area of the canvas needed to make the tent

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{3}{2} \times 2.8+2 \times \frac{22}{7} \times \frac{3}{2} \times 2.1 \\
& =\frac{22}{7} \times \frac{3}{2} \times(2.8+4.2) \\
& =\frac{22}{7} \times \frac{3}{2} \times 7 \\
& =33 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of the canvas $=₹ 500 / \mathrm{m}^{2}$
\therefore Total cost of the canvas needed to make the tent $=500 \times 33=₹ 16,500$.
Q.13. If the point $P(x, y)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$. Prove that $\mathrm{b} x=\mathrm{ay}$.

Solution:

It is given that the point $\mathrm{P}(x, y)$ is equidistant from the points $\mathrm{A}(a+b, b-a)$ and $B(a-b, a+b)$.
$\therefore P A=P B$

$$
\begin{aligned}
& \Rightarrow \sqrt{\left(a+b-x^{2}+\left(b-a-y^{2}\right)\right.}=\sqrt{\left(a-b-x^{2}\right)+\left(a+b-y^{2}\right)} \\
& \Rightarrow\left(a+b-x^{2}\right)+\left(b-a-x^{2}\right)=\left(a-b-x^{2}\right)+\left(a+b-y^{2}\right) \\
& \Rightarrow\left(a+b-x^{2}\right)-\left(a-b-x^{2}\right)=\left(a+b-y^{2}\right)-\left(b-a-y^{2}\right) \\
& \Rightarrow(a+b-x+a-b-x)(a+b-x-a+b+x) \\
& \quad \quad=(a+b-y+b-a-y)(a+b-y-b+a+y) \\
& \Rightarrow(2 a-2 x)(2 b)=(2 b-2 y)(2 a) \\
& \Rightarrow(a-x) b=(b-y) a \\
& \Rightarrow a b-b x=a b-a y \Rightarrow b x=a y .
\end{aligned}
$$

