

Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 12th Mathematics 2016 Solved Paper Outside Delhi

Pack of two pdf files, purchased from www.4ono.com

Note

This pdf file is downloaded from <u>www.4ono.com</u>. Editing the content or publicizing this on any blog or website without the written permission of <u>Rewire Media</u> is punishable, the suffering will be decided under

DMC

CBSE 12th Mathematics 2016 Solved Paper Outside Delhi

4ono con

4ono.com

TIME - 3HR. | QUESTIONS - 26

THE MARKS ARE MENTIONED ON EACH QUESTION

Question numbers 1 to 6 carry 1 mark each

SECTION - A

4ono.con

4ono.com

Q.1. If $x \in N$ and $\begin{vmatrix} x+3 & -2 \\ -3x & 2x \end{vmatrix} = 8$, then find the value of x.1 mathematical equations of the value of the

40no com

Ans.
$$\begin{vmatrix} x+3 & -2 \\ -3x & 2x \end{vmatrix} = 8$$

$$\Rightarrow 2x^{2} + 6x - 6x = 8$$

$$\Rightarrow 2x^{2} = 8$$

$$\Rightarrow x^{2} = 4$$

$$\Rightarrow x = 2$$

$$\therefore x \in \mathbb{N}.$$

Q.2. Use elementary column operation $C_2 \rightarrow C_2 + 2C_1$ in the following matrix equation:

$$\begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$
 I mark

Ans.
$$\begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Using $C_2 \rightarrow C_2 + 2C_1$

$$\begin{pmatrix} 2 & 5 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}.$$

Q.3. Write the number of all possible matrices of order 2×2 with each entry 1, 2 or 3.1 mark

Ans. $3^4 = 81$

Q.4. Write the position vector of the point which divides the join of points with position vectors $3\vec{a} - 2\vec{b}$ and $2\vec{a} + 3\vec{b}$ in the ratio $2 \div 1.1$ mark

Ans. Let \overrightarrow{OP} be the required vector *i*. *e*.

$$\overline{OP} = \frac{2(2\vec{a}+3\vec{b})+1(3\vec{a}-2\vec{b})}{2+1}$$
$$= \frac{7\vec{a}+4\vec{b}}{3}.$$

4ono.com

4ono.com

Q.5. Write the number of vectors of unit length perpendicular to both the vectors of unit length perpendicular to both the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$. *I mark*

4ono.com

4ono.com

4ono com

40no.com

4ono com

Ans.2.

4ono.com

4ono.com

4ono.com

Q.6. Find the vector equation of the plane with intercepts 3, -4 and 2 on x, y and z - axis respectively.*J mark*

Ans.

$$\frac{x}{3} + \frac{y}{-4} + \frac{z}{2} = 1$$

$$\Rightarrow \frac{x}{3} - \frac{y}{4} + \frac{z}{2} = 1$$
 be the eq. of plane.

SECTION - B

Q.7. Find the coordinates of the point where the line through the points A (3, 4, 1) and B (5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane. *4 marks*

Ans. Eq. of line through A (3, 4, 1) and B (5, 1, 6) be:

$$\frac{x-3}{5-3} = \frac{y-4}{1-4} = \frac{z-1}{6-1}$$
$$\Rightarrow \frac{x-3}{2} = \frac{y-4}{-3} = \frac{z-1}{5}$$

Let the point of intersection of line and xz plane be (x_0, y_0, z_0) *i.e.* it lie on line

$$\frac{x_0 - 3}{2} = \frac{y_0 - 4}{-3} = \frac{z_0 - 1}{5} = \lambda$$

$$x_0 = 2\lambda + 3,$$

$$y_0 = -3\lambda + 4, z_0 = 5\lambda + 1$$

It also lie on xz plane so

$$y_0 = 0$$

 $\Rightarrow -3\lambda + 4 = 0$
 $\Rightarrow \lambda = 4/3$
i.e. $x_0 = 2(4/3) + 3 \quad \&z_0 = 5(4/3) + 1$

$$=\frac{8+9}{3} = \frac{20+3}{3}$$
$$=\frac{17}{3} = \frac{23}{3}$$
i.e., *Pt.* be $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$

4ono.com

4ono.com

4ono.con

4ono.com

Direct of line AB is (2, -3, 5) and Direction of plane xz is (0, 1, 0)

4ono.com

40no com

Let angle between line and plane is θ *i*. *e*, angle is sin θ

4ono.com

4ono.com

4ono.com

$$= \left(\frac{2(0) + (-3)1 + 5(0)}{\sqrt{2^2 + (-3)^2 + (5)^2}}\right)$$
$$= \left(\frac{3+0}{\sqrt{38}}\right) = \left(\frac{3}{\sqrt{38}}\right)$$
$$\theta = \sin^{-1}\left(\frac{3}{\sqrt{38}}\right)$$

- Q.8. The two adjacent sides of parallelogram are $2\hat{i} 4\hat{j} 5\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram. *4 marks*
- Ans. Let OABC be a parallelogram with side $\overrightarrow{OA} = \vec{a} = 2\hat{\imath} 4\hat{\jmath} 5\hat{k}$ and $\overrightarrow{AB} = \vec{b} = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$

Now diagonal $\overrightarrow{OB} = \vec{a} + \vec{b} = \overrightarrow{OA} + \overrightarrow{AB}$ = $4\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$

diagonal $\overrightarrow{CA} = \overrightarrow{CB} - \overrightarrow{BA} = \overrightarrow{a} - \overrightarrow{b}$

$$= 0\hat{\imath} - 6\hat{\jmath} - 8\hat{k}$$

$$\widehat{DB} = \frac{\overline{OB}}{\left|\overline{OB}\right|} = \frac{4\widehat{\iota} - 2\widehat{j} - 2\widehat{k}}{\sqrt{16 + 4 + 4}}$$

$$=\frac{4}{\sqrt{24}}\hat{i}-\frac{2}{\sqrt{24}}\hat{j}-\frac{2}{\sqrt{24}}\hat{k}$$

$$=\frac{2}{\sqrt{6}}\hat{i} - \frac{1}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$$

4ono.com

40no cor

4ono.com

$$\widehat{CA} = \frac{-6\hat{j} - 8k}{\sqrt{0^2 + 64 + 36}}$$
$$= \frac{-6}{10}\hat{j} - \frac{8}{10}\hat{k} = \frac{-3}{5}\hat{j} - \frac{4}{5}\hat{l}$$

i.e., unit vector along diagonal be \widehat{OB} and \widehat{CA} .

Now area of parallelogram be

$$= \frac{1}{2} |\overrightarrow{OB} \times \overrightarrow{CA}|$$
$$\overrightarrow{OB} \times \overrightarrow{CA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & -2 \\ 0 & -6 & -8 \end{vmatrix}$$
$$= \hat{i}(16 - 12) - \hat{j}(-32) + \hat{k}(-24)$$
$$= 4\hat{i} + 32\hat{j} - 24\hat{k}$$
$$|\overrightarrow{OB} \times \overrightarrow{CA}| = \sqrt{4^2 + (32)^2 + (24)^2}$$
$$= \sqrt{16 + 1024 + 576}$$
$$= \sqrt{1616} = 4\sqrt{101}$$

Area of parallelogram be = $\frac{1}{2}(4\sqrt{101})$

 $= 2\sqrt{101} \ sq.unit.$

Q.9. In a game, a man wins Rs5 for getting a number greater than 4 and loses Rs1 otherwise, when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he win/lose. 4 marks

Ans. Let x denote the amount he win/loss *i.e.*, x = 5, 4, 3, -3 win in first thrown

P(x = 5) = win in first thrown 2/6 = 1/3 = 9/27P(x = 4) = win in second thrown

$$=\frac{4}{6}\times\frac{2}{6}=\frac{2}{9}=\frac{6}{27}$$

P(x = 3) =win in third thrown

$$= \left(\frac{4}{6}\right) \times \frac{4}{6} \times \frac{2}{6} = \frac{4}{27}$$

4ono.com

$$=\left(\frac{4}{6}\right)^3 = \frac{8}{27}$$

4ono.com

4ono com

4ono.com

$$E(x) = \Sigma x P(x) = 5 \cdot \frac{9}{27} + 4 \cdot \frac{6}{27} + 3 \cdot \frac{4}{27} - 3 \cdot \frac{8}{27}$$
$$= \frac{45 + 24 + 12 - 24}{27} = \frac{57}{27}$$
OR

4ono.com

4ono.com

4ono com

40no cor

A bag contains 4 balls. Two balls are drawn at random (without replacement) and are found to be white. What is the probability that all balls in the bag are white?

Ans. Let E_1 be event the bag has 4 white balls.

 E_2 be event the bag has no white balls

 E_3 be event the bag has 3 white balls

 E_4 be event to draw 2 balls from balls

A be event to draw 2 balls from balls and are white

$$P(E_{1}) = 1/4$$

$$P(E_{2}) = 1/4$$

$$P(E_{3}) = 1/4$$

$$P(E_{4}) = 1/4$$

$$P(A/E_{1}) = 1$$

$$P(A/E_{2}) = 0$$

$$P(A/E_{3}) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{6}$$

$$= \frac{\frac{1}{4} \times 1}{\left(\frac{1}{4} \times 1\right) \left(\frac{1}{4} \times 0\right) \left(\frac{1}{4} \times \frac{1}{2}\right) \left(\frac{1}{4} \times \frac{1}{6}\right)}$$

$$= \frac{1}{1 + \frac{1}{2} + \frac{1}{6}} = \frac{\frac{1}{6+3+1}}{\frac{6+3+1}{6}} = \frac{6}{10} = \frac{3}{5}.$$

Q.10. Differentiate $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x.4 mark

Ans.Let $y = x^{\sin x} + (\sin x)^{\cos x}$ and $u = x^{\sin x}$

taking both side

$$\log u = \log x^{\sin x}$$
$$\log u = \log x \log x$$

Differentiate w.r.t. x

$$\frac{1}{u}\frac{du}{dx} = \left(\cos x \log x + \frac{\sin x}{x}\right)$$

$$\frac{du}{dx} = u \left[\frac{x \cos x \log x + \sin x}{x} \right]$$

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

 $= x^{\sin x} \left[\frac{x \cos x \log x + \sin x}{x} \right]$

 $= x^{(\sin x - 1)} [x \cos x \log x + \sin x]$

$$v = (\sin x)^{\cos x}$$

Taking log both side

4ono.com

 $log v = log(sin x)^{cos x}$ log v = cos x log sin x

Differentiate w.r.t. x

$$\frac{1}{v}\frac{dv}{dx} = -\sin x \log(\sin x) + \cos x (\cot x)$$
$$= (\sin x)^{\cos x} [(-\sin x \log^{\sin x}) + \cos x \cot x]$$

Now

4ono.com

4ono.com

$$y = u + v$$

 \Rightarrow differentiate w.r.t. x

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

 $= x^{(\sin x - 1)} [x \cos x \log x + \sin x] + (\sin x)^{\cos x} [-\sin x \log(\sin x) + \cos x \cot x]$

OR

If $y = 2\cos(\log 3) + 3\sin(\log x)$, prove that

$$x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0.$$

Ans. $y = 2\cos(\log x) + 3\sin(\log x)$ differentiate w.r.t. x

$$\frac{dy}{dx} = \frac{-2\sin(\log x)}{x} + \frac{3\cos(\log x)}{x}$$
$$x\frac{dy}{dx} = -2\sin(\log x) + 3\cos(\log x)$$

Again differentiate w.r.t. x

$$(1)\frac{dy}{dx} + x\frac{d^2y}{dx^2} = \frac{-2\cos(\log x)}{x} + 3\left[\frac{-\sin(\log x)}{x}\right]$$

$$\Rightarrow x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = -\left(\frac{2\cos(\log x) + 3\sin(\log x)}{x}\right)$$

4ono.com

4ono.com

4ono.com

4ono.com

4ono com

$$\Rightarrow x^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} = -y$$
$$\Rightarrow x^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0.$$

Q.11. If $x = a \sin 2t (1 + \cos 2t)$ and $y = b \cos 2t (1 - \cos 2t)$, find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$.4 marks

Ans. $x = a \sin 2t (1 + \cos 2t)$ and $y = b \cos 2t (1 - \cos 2t)$

4ono.com

4ono.com

differentiate w.r.t. x

4ono.com

4ono.com

4ono.com

4ono.con

 $\frac{dx}{dt} = a[2\cos 2t (1 + \cos 2t) + \sin 2t (-2\sin 2t)]$ $= 2a[\cos 2t + \cos^2 2t - \sin^2 2t]$ $= 2a[\cos 2t + \cos 4t]$

$$\frac{dy}{dt} = b[2(-\sin 2t)(1 - \cos 2t) + \cos 2t (\sin 2t)2] = 2b[-\sin 2t + \sin 2t \cos 2t + \sin 2t \cos 2t] = 2b[-\sin 2t + \sin 4t]$$

Now

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2b(\sin 4t - \sin 2t)}{2a(\cos 2t + \cos 4t)}$$
$$= \frac{b}{a} \left(\frac{\sin 4t - \sin 2t}{\cos 2t + \cos 4t}\right)$$
$$\frac{dy}{dx}\Big|_{t=\pi/4} = \frac{b}{a} \left(\frac{0-1}{-1+0}\right) = \frac{b}{a}.$$

Q.12. The equation to tangent at (2, 3) on the curve $y^2 = ax^3 + b$ is y = 4x - 5. Find the values of *a* and *b*.4 marks

Ans.
$$y^2 = ax^3 + b$$
 and pt. is (2, 3)

Differentiate w.r.t. x

$$2y\frac{dy}{dx} = 3ax^2$$
$$\frac{dy}{dx} = \frac{3ax^2}{2y}$$

= 2a = Slope of tangent.

and eq. of tangent is

4ono.com

y-3 = m(x-2) y-3 = 2a(x-2)y = 2ax - 4a + 3

Now compare with y = 4x - 5 i. e.,

$$2a = 4$$
 and $-4a + 3 - 5$

$$a = 4 \quad -4a = -8$$

Pt. (2, 3) also lie on curve *i.e.*,

$$9 = 8a + b$$

 $9 = 8(2) + b$
 $b = 9 - 16 = -16$
i.e., $a = 2$ and $b = -7$.

Q.13. Find:4 marks

$$\int \frac{x^2}{x^4 + x^2 - 2} \, dx$$

Ans.

$$I = \int \frac{x^2}{x^4 + x^2 - 2} dx = \int \frac{x^2 dx}{x^4 + 2x^2 - x^2 - 2} dx$$
$$\int \frac{x^2 dx}{(x^2 + 2)(x^2 - 1)}$$

Now let

$$\frac{x^2 dx}{(x^2 + 2)(x^2 - 1)}$$

= $\frac{A}{(x^2 + 2)} + \frac{B}{(x^2 - 1)}$
 $x^2 = A(x^2 - 1) + B(x^2 + 2)$
 $\Rightarrow x^2 = (A + B)x^2 + (A + 2B)$

$$A + B = 1$$
 and $-A + 2B = 0$
 $\Rightarrow 3B = 1$

B = 1/3

4ono.com

and A = 1 - 1/3 = 2/3

Now,

$$I = \int \frac{2/3}{(x^2 + 2)} + \frac{1/3}{(x^2 - 1)} dx$$
$$= \frac{2}{3} \int \frac{dx}{x^2 + (\sqrt{2})^2} + \frac{1}{3} \int \frac{dx}{x^2 - 1}$$
$$= \frac{2}{3} \left[\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) \right] + \frac{1}{3} \left[\frac{1}{2} \log \left(\frac{x - 1}{x + 1} \right) \right] + C$$
$$= \frac{2}{3\sqrt{3}} \tan^{-1} \left(\frac{x}{2} \right) + \frac{1}{6} \log \left(\frac{x - 1}{x + 1} \right) + C.$$

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

Q.14. Evaluate: 4 marks

 $\int_{0}^{2} \frac{\sin^2 x}{\sin x + \cos x} dx$

Ans.

4ono.com

4ono.com

$$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx \qquad \dots (i)$$
$$\left\{ Apply \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \right\}$$

Now,

$$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2}(x/2 - x)}{\sin(x/2 - x) + \cos(x/2 - x)} dx$$
$$I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2} x}{\cos x + \sin x} dx \qquad \dots (ii)$$

Buy Full PDF File @ http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers/