

[8]

ICSE Paper 2013

MATHEMATICS

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

- (a) Given $A = \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$
 - Find the matrix X such that A + 2X = 2B + C.
- (b) At what rate % p.a. will a sum of ₹ 4000 yield ₹ 1324 as compound interest in 3 [3] years ?
- (c) The median of the following observations 11, 12, 14, (x 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24. Find the value of x and hence find the [4] mean.
- Solution :

•

A = $\begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}$, B = $\begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}$ and C = $\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$ (a) Given : A + 2X = 2B + C

Putting the given values, we get

$$\begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix} + 2X = 2\begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

$$2X = \begin{bmatrix} -6 + 4 & 4 + 0 \\ 8 + 0 & 0 + 2 \end{bmatrix} - \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}$$

$$X = \frac{1}{2} \begin{bmatrix} -4 & 10 \\ 6 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} -2 & 5 \\ 3 & 1 \end{bmatrix}$$

(b) Given : Principal = \P 4,000, C.I. = \P 1,324,
Ame.

$$Amount = P + C.I.$$

$$= \P (4,000 + 1,324) = \P 5,324$$

Time = 3 years
We know that,

$$A = P \left(1 + \frac{r}{100} \right)^T$$

$$5,324 = 4,000 \left(1 + \frac{r}{100} \right)^3$$

$$\frac{5,324}{4,000} = \left(1 + \frac{r}{100} \right)^3$$

.com

۰,

36

,

Ľ

.

11 i

į

mer engin

į, è. ł,

5

2

÷,

." _____

	$\frac{1,331}{1,000} \approx \left(1 + \frac{r}{100}\right)^3$	
5•3	$\left(\frac{11}{10}\right)^3 = \left(1 + \frac{r}{100}\right)^3$	
Therefore,	$1 + \frac{r}{100} = \frac{11}{10}$	
	$\frac{r}{100} = \frac{11}{10} - 1$	
	$\frac{r}{100} = \frac{1}{10}$	
	$r = \frac{100}{10}$	
	r = 10%	A
Given observation		Ans.
Given observation = 24.	r = 10% n are 11, 12, 14, $(x - 2)$, $(x + 4)$, $(x - 4)$	Ans. 9), 32, 38, 47 and median
Given observation = 24. · ·		Ans. - 9), 32, 38, 47 and median
Given observation = 24. 	n are 11, 12, 14, (x - 2), (x + 4), (x -	Ans. - 9), 32, 38, 47 and median
Given observation = 24. 	n are 11, 12, 14, $(x - 2)$, $(x + 4)$, $(x - n = 9 \text{ (odd)})$	Ans. - 9), 32, 38, 47 and median
Given observation = 24. 	n are 11, 12, 14, $(x - 2)$, $(x + 4)$, $(x - 2)$ n = 9 (odd) Median $= \frac{n+1}{2}$ th term	Ans. - 9), 32, 38, 47 and median
Given observation = 24. 	h are 11, 12, 14, $(x - 2)$, $(x + 4)$, $(x - 2)$ n = 9 (odd) Median $= \frac{n+1}{2}$ th term $= \frac{9+1}{2}$ th term	Ans. - 9), 32, 38, 47 and median
Given observation = 24. 	h are 11, 12, 14, $(x - 2)$, $(x + 4)$, $(x + 3)$ n = 9 (odd) Median $= \frac{n+1}{2} \text{ th term}$ $= \frac{9+1}{2} \text{ th term}$ 24 $= 5 \text{ th term}$	Ans. - 9), 32, 38, 47 and median

Therefore, 11, 12, 14, (20 - 2), (20 + 4), (20 + 9), 32, 38, 47 = 11, 12, 14, 18, 24, 29, 32, 38, 47

Now

(c)

Mean =
$$\frac{\Sigma x}{n}$$

= $\frac{11 + 12 + 14 + 18 + 24 + 29 + 32 + 38 + 47}{9}$
= $\frac{225}{9} = 25.$ Ans.

Question 2.

- (a) What number must be added to each of the number 6, 15, 20 and 43 to make them proportional ? [3]
- (b) If (x 2) is a factor of the expression $2x^3 + ax^2 + bx 14$ and when the expression is divided by (x - 3), it leaves a remainder 52, find the values of a and b. [3]
- (c) Draw a histogram from the following frequency distribution and find the mode from the graph : 141

0.5					(*
0-0	5-10	10–15	15-20	20-25	25-30
2	5	18	14	8	
	0-5 2	0-5 5-10 2 5	0 10 10-13	0 10 10-13 10-20	0 10 10-13 13-20 20-25

Solution :

....

(a) Let the number must be added be x, then

the new number =
$$6 + x$$
, $15 + x$, $20 + x$, $43 + x$

: These are proportionals.

	6+x:15+x:20+x:43+x	
OT	(6+x)(43+x) = (15+x)(20+x)	
or	$258 + 6x + 43x + x^2 = 300 + 20x + 15x + x^2$	
or	49x - 35x = 300 - 258	
	14x = 42	-1
or	x = 3.	Ans.
OT	r = 2) is a factor of the given expression.	

(b) Let (x-2) is a factor of the given expression

$$\begin{array}{r} x-2 = 0 \\ r = 2 \end{array}$$

Given expression,

 $2x^{3} + ax^{2} + bx - 14 = 0$ $2 (2)^{3} + a (2)^{2} + b (2) - 14 = 0$ 16 + 4a + 2b - 14 = 0 4a + 2b + 2 = 0 4a + 2b = -22a + b = -1 ...(i)

and when given expression is divided by (x - 3)

$$x - 3 = 0$$

$$x = 3$$

$$2x^{3} + ax^{2} + bx - 14 = 52$$

$$2 (3)^{3} + a(3)^{2} + b(3) - 66 = 0$$

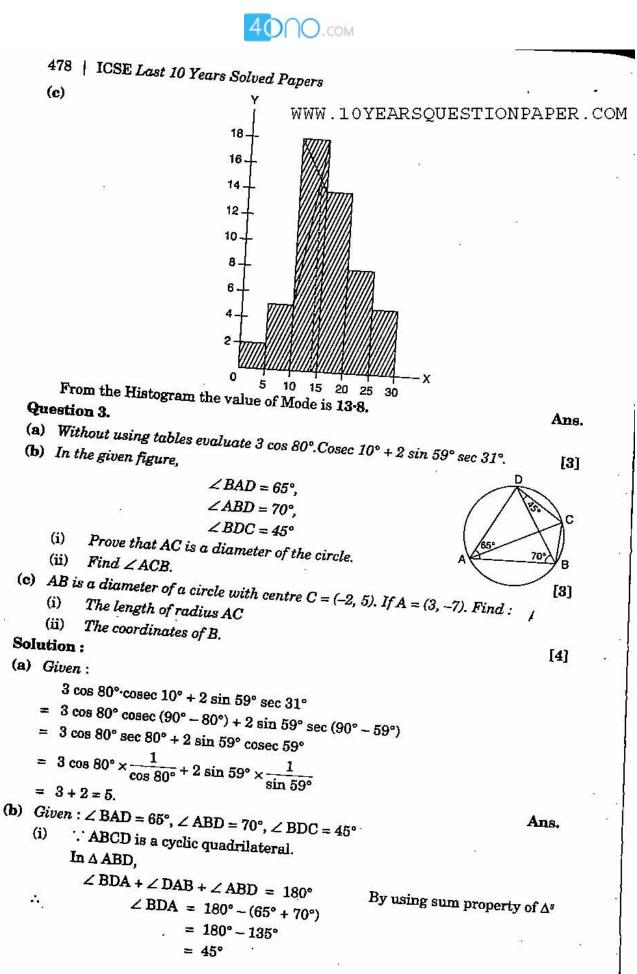
$$54 + 9a + 3b - 66 = 0$$

$$9a + 3b = 12$$

$$3a + b = 4$$
...(ii)

Solving equation (i) and (ii),

$$2a + b = -1$$


$$3a + b = 4$$

(-) (-) (+)

$$-a = -5$$

$$a = 5$$

from (ii),

$$3 \times 5 + b = 4$$

 $b = 4 - 15$
 $b = -11$
 $a = 5$ and $b = -11$ Ans.

Now from \triangle ACD,

$$\angle ADC = \angle ADB + \angle BDC$$

= 45° + 45° ($\therefore \angle BDA = \angle ADB = 45^{\circ}$)
= 90°

Hence, $\angle D$ makes right angle belongs in semi-circle therefore AC is a diameter of the circle.

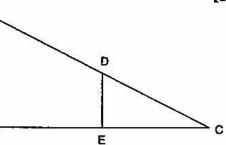
(ii)
$$\angle ACB = \angle ADB$$
 (Angles in the same segment of a circle)
 $\therefore \ \angle ACB = 45^{\circ}$ ($\therefore \angle ADB = 45^{\circ}$) Ans.
(c) (i) The length of radius AC = $\sqrt{(-2-3)^2 + (5+7)^2}$
 $= \sqrt{(-5)^2 + (12)^2}$
 $= \sqrt{25+144}$ (3, -7) ($(-2, 5)$) B
 $= \sqrt{169}$
 $= 13.$ Ans.

(ii) Let the point of B be (x, y).

Given C is the mid-point of AB. Therefore

	$-2 = \frac{3+x}{2}$
⇒	3+x = -4
⇒	x = -4 - 3 = -7
and	$5 = \frac{-7+y}{2}$
⇒	10 = -7 + y
	y = 17

Hence, the co-ordinate of B (-7, 17).


Question 4.

Υ.

(a) Solve the following equation and calculate the answer correct to two decimal places:

$$x^2 - 5x - 10 = 0.$$
 [3]

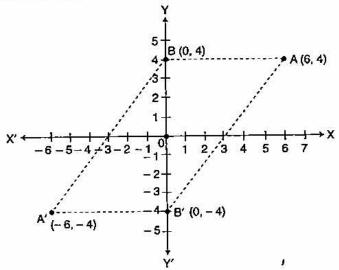
- (b) In the given figure, AB and DE are per- A pendicular to BC.
 - (i) Prove that $\triangle ABC \sim \triangle DEC$
 - (ii) If AB = 6 cm, DE = 4 cm and AC = 15 cm. Calculate CD.

- (iii) Find the ratio of the area of \triangle B \square ABC : area of \triangle DEC. [3]
- (c) Using graph paper, plot the points A(6, 4) and B(0, 4).
 - (i) Reflect A and B in the origin to get the images A' and B'.
 - Write the co-ordinates of A' and B'.
 - (iii) State the geometrical name for the figure ABA B'.

(iv) Find its perimeter.

[4]

Ans.



480	ICSE Last 10 Yea	urs Solved Papara		
Solu	tion ;	. o Solvea I apers	i i	
(a) (Given: $x^2 - 5x - 10$	= 0 .		
I	Here, $a = 1$, $b = -5$ a	and $c = -10$		
		$\mathbf{D} = b$	$a^{2} - 4ac$	
		= (-	$(-5)^2 - 4 \times 1 \times -10$	
		D = 2	5 + 40 = 65	λ.
		<i>x</i> = -	$\frac{b\pm\sqrt{D}}{2a}$	
		$=\frac{5}{2}$	$\frac{\pm\sqrt{65}}{2\times1} = \frac{5\pm8.06}{2}$	
			$\frac{+8.06}{2}, \frac{5-8.06}{2}$	
		3-	$\frac{3.06}{2}, -\frac{3.06}{2}$	а. С
(b) (i)	From ABC and		53, ~1·53	Ans.
		$\angle ABC = \angle 1$	DEC = 90°	
	and		DCE = Common	(Given)
	2.	ΔABC ~ ΔE		(By AA similarity)
(ii)	In \triangle ABC and \triangle	DEC,		(by AA similarity)
		\triangle ABC ~ \triangle D	EC	(proved in (i) part)
		$\frac{AB}{DE} = \frac{AC}{CD}$		1
	Given : $AB = 6 cm$	20 OD		
	= 15 cm,		^	El Transmission
	$\therefore \frac{6}{4}$	$=\frac{15}{CD}$		D D
		= 15 x 4	6 cm	
		$=\frac{60}{6}$	в	4 cm C
	⇒ CD	= 10 cm.		E
(iii)	Area o	f ABC AB ²		Ans.
	Area o	$f \Delta DEC = DE^2$	($\therefore \Delta ABC - \Delta DEC$)
		$=\frac{(6)^2}{(4)^2}$		
		$=\frac{3.6}{16}=$	$\frac{9}{4}$	
	\therefore Area of \triangle ABC :			
				Ans.

,

(c) (i) Please See Graph.

- Reflection of A' and B' in the origin = A' (-6, -4) and B' (0, -4)(ii)
- The geometrical name for the figure AB AB' is a parallelogram. (iii)
- From the graph, AB = 6 cm, BB' = 8 cm. (iv) In $\triangle A BB'$

 $(AB')^2 = AB^2 + (BB')^2$ $= (6)^2 + (8)^2 = 36 + 64$ = 100(AB A' B' is a parallelogram) AB' = 10 = A'BPerimeter of ABA'B' = A'B' + AB' + AB + A'B= 6 + 10 + 6 + 10Ans. = 32 units.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) Solve the following inequation, write the solution set and represent it on the number line :

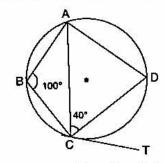
$$-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}, x \in R$$
 [3]

(b) Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets ₹ 8088 from the bank after 3 years, find the value of his monthly instalment.

[3]

- (c) Salman buys 50 shares of face value ₹ 100 available at ₹ 132.
 - What is his investment ? (i)
 - If the dividend is 7.5%, what will be his annual income ? (ii)
 - (iii) If he wants to increase his annual income by ₹ 150, how many extra [4] shares should he buy?

482 | ICSE Last 10 Years Solved Papers Solution : $-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}$ (a) Given : Taking L.C.M. of 3, 2 and 6 is 6. $-\frac{x}{3} \times 6 \le \frac{x}{2} \times 6 - \frac{4}{3} \times 6 < \frac{1}{6} \times 6$ $-2x \le 3x - 8 < 1$ => $-2x \leq 3x - 8$ and . 3x - 8 < 1 $8 \leq 3x + 2x$ => ⇒ 3x < 1 + 8 $8 \leq 5x$ ⇒ ⇒ 3x < 9 $\frac{8}{5} \leq x$ -=> x < 3:. The solution set is $\{x : 1: 6 \le x \le 3, x \in \mathbb{R}\}$ -1 0 1 2 3 Number line (b) Let the monthly instalment be $\langle x \rangle$ Given : Maturity amount = \$ 8,088, Time (n) = 3 years = 3×12 months = 36 months, Rate (R) = 8% p.a. Principle for one month = $P \times \frac{n(n+1)}{2}$ $=\frac{x\times 36\times 37}{2}$ $= 18 \times 37 x$ $\int : I = \frac{PRT}{100}$ Interest = $\frac{18 \times 37x \times 8 \times 1}{100 \times 12}$ $=\frac{444\,\pi}{100}$ Actual sum deposited = 36xMaturity amount = Interest + Actual sum deposited $8,088 = \frac{444 x}{100} + 36 x$ $8,088 = \frac{4,044 x}{100}$ $x = \frac{8,088 \times 100}{4.044} = 200$ Hence, the monthly instalment be ₹ 200. Ans. (c) Number of shares = 50Face value of each share = ₹100Market value of each share = ₹132 Total face value = \mathbf{R} 100 × 50 = ₹5,000 (i) Total investment = ₹132 × 50 = ₹6,600 Ans.


1

Rate of dividend = 7.5%(ii) Annual income = $\mathbf{\overline{\xi}} \frac{5,000 \times 7.5}{100}$ Ans. = ₹375 (iii) Let extra share should he buy be x. then total number of shares = 50 + xTotal face value = $\mathbf{\overline{\xi}} 100 \times (50 + x)$ Annual income = $\frac{100 \times (50 + x) \times 7.5}{100}$ $= (50 + x) \times 7.5$ $(50 + x) \times 7.5 = 375 + 150$... $50 + x = \frac{525}{7 \cdot 5} = 70$ x = 70 - 50x = 20Ans. the extra shares should be buy = 20. Hence,

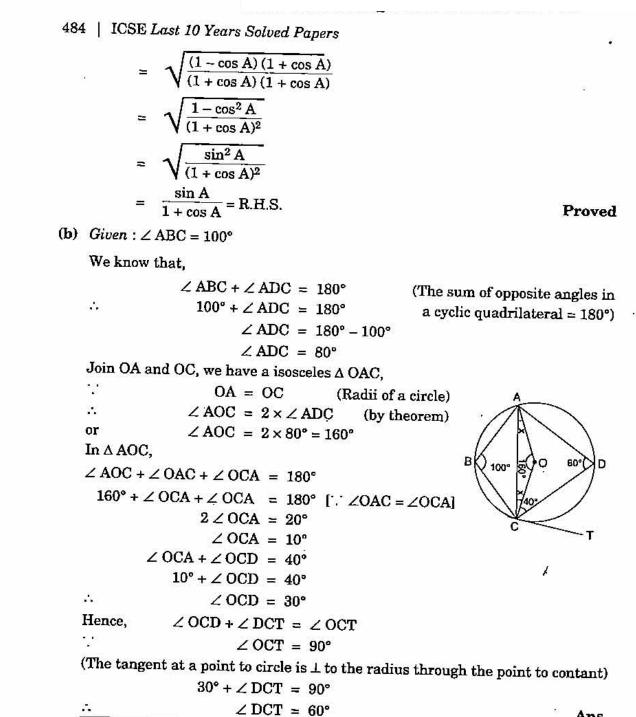
Question 6. (a) Show that $\sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{\sin A}{1+\cos A}$

(b) In the given circle with centre O, $\angle ABC = 100^{\circ}$, $\angle ACD = 40^{\circ}$ and CT is a [3] tangent to the circle at C. Find $\angle ADC$ and $\angle DCT$.

below are the entries in a Savings Bank A/c pass book : (c)

	Withdrawals	Deposit	Balance
Fatticulars			₹ 8,500
B/F	·—	_	10,000
To self	₹4,000		—
16百代郡 高二 「成」	12-12 1 <u>2-1</u> 2	₹ 2.230	12 <u>17 17</u>
		10.000000 12 21	·
To self	₹ 5,000	-	
Ry cash	I . → I	₹ 6,000	<u> </u>
	Particulars B/F To self By cash To self By cash	B/F To self By cash To self ₹ 5,000	ParticularsWithermal B/F -To self $\overline{\xi}$ 4,000By cash-To self $\overline{\xi}$ 5,000To self $\overline{\xi}$ 5,000

Calculate the interest for six months from February to July at 6% p.a. Solution :


(a) L.H.S. = $\sqrt{\frac{1 - \cos A}{1 + \cos A}}$

Multiplying by $\sqrt{1 + \cos A}$ in numerator and denominator

$$= \sqrt{\frac{1-\cos A}{1+\cos A}} \times \sqrt{\frac{1+\cos A}{1+\cos A}}$$

[3]

(c)

- 1

Ans. Date Particulars Withdrawals Deposit Balance Feb. 8 B/F ₹ 8,500 Feb. 18 To self ₹ 4,000 ₹ 4,500 April 12 By cash ₹ 2,230 ₹ 6,730 June 15 To self ₹ 5,000 ₹ 1,730 July 8 By cash ₹ 6,000 ₹ 7,730 Principal for the month of Feb. = \mathbf{X} 4,500 Principal for the month of March = \mathbf{R} 4,500

Principal for the month of April = \mathbf{T} 4,500

Principal for the month of May = \mathbf{R} 6,730

Principal for the month of June = **₹** 1,730

Principal for the month of July = 7,730

Total principal from the month of Feb. to July = ₹ 29,690

Time =
$$\frac{1}{12}$$
 years

Rate of interest
$$= 6\%$$

Interest =
$$\frac{P \times R \times T}{100}$$
$$= \frac{29690 \times 6 \times 1}{100 \times 12}$$
$$= ₹ 148.45$$

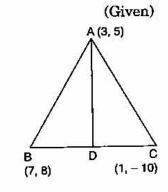
Question 7.

- (a) In ∆ ABC, A(3, 5), B(7, 8) and C(1, -10). Find the equation of the median through A.
 [3]
- (b) A shopkeeper sells an article at the listed price of ₹ 1,500 and the rate of VAT is 12% at each stage of sale. If the shopkeeper pays a VAT of ₹ 36 to the Government, what was the price, inclusive of Tax, at which the shopkeeper purchased the article from the wholesaler ?
- (c) In the figure given, from the top of a building $AB = 60 \text{ m}^{\wedge}$ high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60° respectively. Find :
 - (i) The horizontal distance between AB and CD.
 - (ii) The height of the lamp post.

Solution :

(a) Here D is mid point of BC.

. .


The co-ordinate of D =
$$\left(\frac{7+1}{2}, \frac{8-10}{2}\right)$$

= $(4, -1)$

Now equation of median AD,

$$y-y_1 = \frac{y_2-y_1}{x_2-x_1}(x-x_1)$$

Here, $x_1 = 3$, $y_1 = 5$, $x_2 = 4$, $y_2 = -1$

$$y-5 = \frac{-1-5}{4-3}(x-3)$$
$$y-5 = \frac{-6}{1}(x-3)$$
$$y-5 = -6x + 18$$

[4] ^{BL}

Ans.

D

C

COM

$$y = -6x + 18 + 5$$

$$y = -6x + 23$$

$$6x + y - 23 = 0$$

(b) Listed price of an article = ₹ 1,500
Rate of VAT = 12%
VAT on the article = $\frac{12}{100} \times 1500$
= ₹ 180

Let C.P. of this article be x, then

VAT =
$$\frac{12}{100} \times x$$

= $\frac{12x}{100}$
If the shopkeeper pays a VAT = $\frac{36}{100}$
Then $180 - \frac{12x}{100} = 36$
 $\frac{18000 - 12x}{100} = 36$
 $\frac{18000 - 12x}{100} = 36$
 \therefore 12x = 18000 - 3600 = 14,400
x = ₹ 1,200

 \therefore The price at which the shopkeeper purchased the article inclusive of sales tax

 $= 1,200 + \frac{12}{100} \times 1,200$ = 1,200 + 144= ₹ 1,344

(c) Given : AB = 60 m

 $\angle PAC = 60^{\circ}$... 30 $\angle PAC = \angle BCA$ ഞ (i) Now in \triangle ABC, 30 D $\tan 60^\circ = \frac{AB}{BC}$ $\sqrt{3} = \frac{60}{BC}$ вС 60? С $\sqrt{3}$ BC = 60 $BC = \frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ ⇒ BC = $\frac{60\sqrt{3}}{3} = 20\sqrt{3}$ Hence, the horizontal distance between AB and CD = $20 \sqrt{3}$ m.

(ii) Let AE = x and proved above BC = $20\sqrt{3}$ m. Ans. \therefore BC = ED = $20\sqrt{3}$

Ans.

1

$$\tan 30^{\circ} = \frac{AE}{ED}$$

$$\frac{1}{\sqrt{3}} = \frac{AE}{20\sqrt{3}}$$

$$\Rightarrow \qquad \sqrt{3} AE = 20\sqrt{3}$$

$$\Rightarrow \qquad AE = 20 m$$
now
$$EB = AB - AE$$

$$\therefore \qquad EB = 60 - 20 \Rightarrow 40 m$$

$$\therefore \qquad EB = CD$$

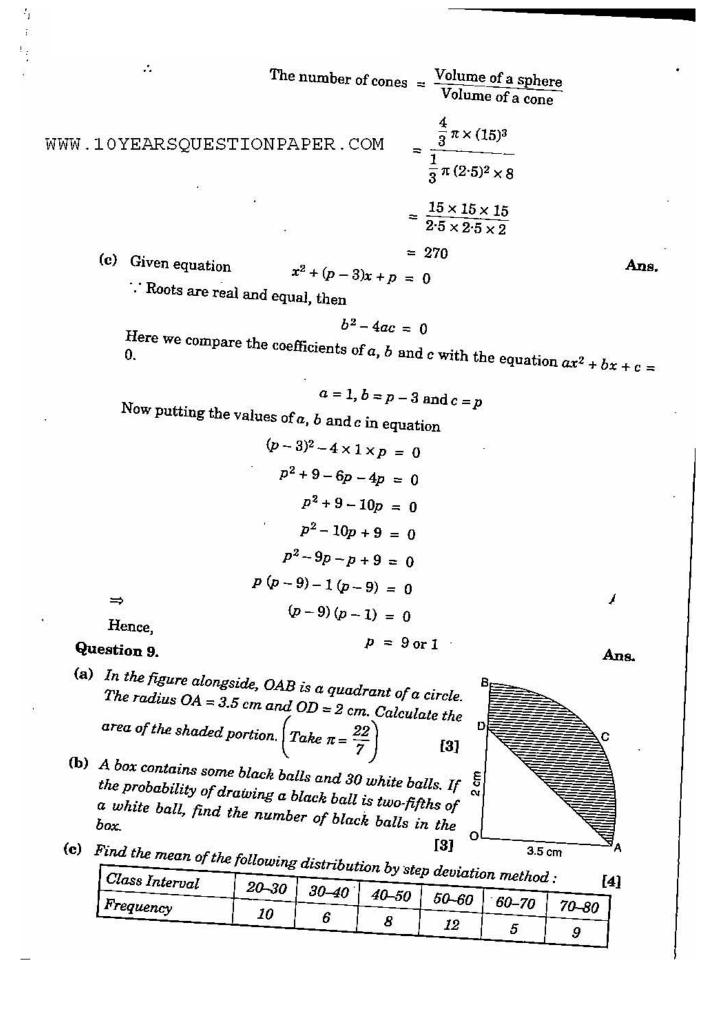
$$\therefore \qquad CD = 40 m$$

Hence, the height of the lamp post = 40 m.

Question 8.

Now in \triangle AED,

- (a) Find x and y if $\begin{bmatrix} x & 3x \\ y & 4y \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$ [3]
- (b) A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.
 - [3]
- (c) Without solving the following quadratic equation, find the value of 'p' for which the given equation has real and equal roots :


$$x^2 + (p-3)x + p = 0$$
 [4]

Solution :

 $\begin{bmatrix} x & 3x \\ y & 4y \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$ $\begin{bmatrix} 2x + 3x \\ 2y + 4y \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$ (a) Given: 5x . $5x = 5 \implies$ x = 1 $6y = 12 \Rightarrow$ and y = 2Hence, x = 1 and y = 2Ans. **(b)** Radius of a solid sphere, r = 15 cm Volume of a solid sphere = $\frac{4}{3}\pi r^3$ $=\frac{4}{3} \times \pi (15)^3 \text{ cm}^3.$ Now, radius of right circular cone = 2.5 cm and height, h = 8 cm. Volume of right circular cone = $\frac{1}{3}\pi r^2h$ $=\frac{1}{9}\pi(2.5)^2\times 8$

Ans.

4]

4000.сом

Mathematics, 2013 | 489 Solution : (a) Radius of quadrant OACB, r = 3.5 cm ... Area of quadrant OACB = $\frac{1}{4}\pi r^2$ $=\frac{1}{4}\times\frac{22}{7}\times3.5\times3.5$ $= 9.625 \text{ cm}^2$ Here, $\angle AOD = 90^{\circ}$ Then area of \triangle AOD $= \frac{1}{2} \times \text{base} \times \text{height}$ Base = 3.5 cm and height = 2 cm $=\frac{1}{2} \times 3.5 \times 2 = 3.5 \text{ cm}^2.$ ۸. Area of shaded portion = Area of quadrant - Area of triangle = 9.625 - 3.5 $= 6.125 \text{ cm}^2$ (b) Let the number of black balls be x, then Ans. Total number of balls = 30 + xThus, the prabability of black balls = $\frac{x}{30+x}$. and the probability of white balls = $\frac{30}{30+x}$ Probability of black ball = $\frac{2}{5} \times \text{probability of white ball}$ Given : $\frac{x}{30+x} = \frac{2}{5} \times \frac{30}{x+30}$ 5x = 60x = 12Hence, the number of black balls = 12. Ans. (c) C.I. Frequency Mid-value $d_i = \frac{x-a}{h}$ $f_i d_i$ (f_i) (x) 20-30 10 25-2 -2030-40 6 35 -1 -6 40-50 8 45 0 0 50-60 12 55 1 12 60 - 705 65 2 10 70-80 9 75 3 27 $\Sigma f_i = 50$ $\Sigma f_i d_i = 23$ Here, a = 45 and h = 10λ.

Mean = $a + \frac{\sum f_i d_i}{\sum f_i} \times h$ = $45 + \frac{23}{50} \times 10$ = 45 + 4.6 = 49.6.

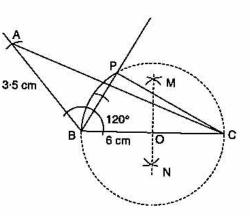
Ans.

Question 10.

13

- (a) Using a ruler and compasses only :
 - (i) Construct a triangle ABC with the following data : AB = 3.5 cm, BC = 6 cm and ∠ABC = 120°
 - (ii) In the same diagram, draw a circle with BC as diameter. Find a point P on the circumference of the circle which is equidistant from AB and BC.
 - (iii) Measure $\angle BCP$.
- (b) The mark obtained by 120 students in a test are given below :

Marks	No. of Students
0–10	5
10-20	9
20–30	16
30-40	22
40–50	26
50-60	18
60–70	11
7080	6
80–90	4
90–100	3

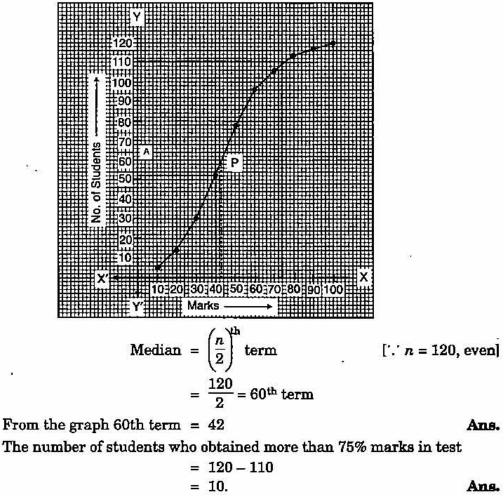

Draw an ogive for the given distribution on a graph sheet.

Using suitable scale for ogive to estimate the following :

- (i) The median.
- (ii) The number of students who obtained more than 75% marks in the test.
- (iii) The number of students who did not pass the test if minimum marks required to pass is 40.
 [6]

Solution :

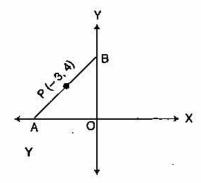
- (a) Steps of Construction :
 - (i) Draw a line BC = 6 cm.
 - (ii) With the help of the point B, draw $\angle ABC = 120^{\circ}$
 - (iii) Taking radius 3.5 cm cut BA = 3.5 cm.
 - (iv) Join A to C.
 - (v) $Draw \perp bisector MN of BC.$
 - (vi) Draw a circle O as centre and OC as radius.
 - (vii) Draw angle bisector of \angle ABC which intersects circle at P.
 - (viii) Join BP and CP.
 - (ix) Now, $\angle BCP = 30^\circ$.


[3]

(b)	Marks	No. of Students (f)	Cumulative Frequency
	0–10	5	5
	10-20	9	14
	20-30	16	30
	30-40	22	52
2	40-50	26	78
	50-60	18	96
1	60-70	11	107
	70-80	6	113
	80–90	4	117
	90–100	3	120
Γ		n = 120	

On the graph paper, we plot the following points :

(10, 5), (20, 14), (30, 30), (40, 52), (50, 78), (60, 96), (70, 107), (80, 113), (90, 117), (100, 120).


(iii) The number of students who did not pass the test if the minimum pass marks 40 = 52.Ans.

(i)

(ii)

Question 11.

(a) In the figure given below, the line segment AB meets X-axis at A and Y-axis at B. The point P(-3, 4) on AB divides it in the ratio 2 : 3. Find the coordinates of A and B.

(b) Using the properties of proportion, solve for x, given

$$\frac{x^4+1}{2x^2} = \frac{17}{8} \tag{3}$$

(c) A shopkeeper purchases a certain number of books for < 960. If the cost per book was < 8 less, the number of books that could be purchased for < 960 would be 4 more. Write an equation, taking the original cost of each book to be < x, and solve it to find the original cost of the books.

Solution :

(a) Let the co-ordinates of A and B be (x, 0) and (0, y)

The co-ordinates of a point P (-3, 4) on AB divides it in the ratio 2 : 3.

AP:PB = 2:3

i.e.,

By using section formula, we get

$$-3 = \frac{2 \times 0 + 3 \times x}{2 + 3} \qquad \left[\because x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \right]$$
$$-3 = \frac{3x}{5} \implies 3x = -15$$
$$x = -5$$
$$4 = \frac{2 \times y + 3 \times 0}{2 + 3} \qquad \left[\because y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right]$$
$$4 = \frac{2y}{5} \implies 2y = 20$$
$$y = 10$$

⇒

⇒

and

Hence, the co-ordinates of A and B are (-5, 0) and (0, 10).

Ans.

1

(b) Given: $\frac{x^4+1}{2x^2} = \frac{17}{8}$

By using componendo and dividendo, we get

$$\frac{x^4 + 1 + 2x^2}{x^4 + 1 - 2x^2} = \frac{17 + 8}{17 - 8}$$

40∩О.сом

Mathematics, 2013 | 493

 $\left(\frac{x^2+1}{x^2-1}\right)^2 = \frac{25}{9} \\ \left(\frac{x^2+1}{x^2-1}\right)^2 = \left(\frac{5}{3}\right)^2$ Taking square root on both sides, we get $\frac{x^2+1}{x^2-1} = \frac{5}{3}$ $5x^2 - 5 = 3x^2 + 3$ ⇒ $5x^2 - 3x^2 = 3 + 5$ = $2x^2 = 8 \Rightarrow$ $x^2 = 4$ ⇒ $x = \pm 2$ Ans. => (c) Given the original cost of each book be $\forall x$. (Given) Total cost = ₹960 Number of books for 960 = $\frac{960}{x}$ If the cost per book was $\overline{\mathbf{x}} \otimes \mathbf{s}$, (i.e., x - 8) then Number of books = $\frac{960}{r-8}$ According to question, $\frac{960}{x-8} = \frac{960}{x} + 4$ $\frac{960}{x-8} - \frac{960}{x} = 4$ $960 \left[\frac{x-x+8}{x(x-8)} \right] = 4$ $\frac{8}{x^2 - 8x} = \frac{1}{240}$ $x^2 - 8x = 1,920$ ⇒ $x^2 - 8x - 1,920 = 0$ Ans. \Rightarrow $x^2 - 48x + 40x - 1,920 = 0$ \Rightarrow x(x-48)+40(x-48) = 0⇒ (x-48)(x+40) = 0⇒ x-48=0or x + 40 = 0x = -40x = 48OT : - 40 is not possible. Hence, the original cost of each book = ₹ 48. Ans.

For more sample papers visit : www.4ono.com