

ICSE Paper 2009

MATHEMATICS

SECTION A [40 Marks]

(Answer **all** questions from this Section.)

Question 1.

(a)	Mr. Dubey borrows \lt 1,00,000 from State Bank of India at 11% per compound interest. He repays \lt 41,000 at the end of the first year and at the end of the second year. Find the amount outstanding at the beg	₹47,700
	the third year.	[ø]
(b)	A dice is thrown once. What is the probability that the	
	(i) number is even	[3]
	(ii) number is greater than 2?	
(c)	Find the HCF and LCM of the following polynomials : ** $3x^3 - 27x^2 + 60x$ and $x^2 - 16$	[4]
	lution :	
(a)) Given : $P = \overline{1,00,000}, R = 11\%$	
	Interest for first year = $\frac{PRT}{100} = \frac{1,00,000 \times 11 \times 1}{100} = ₹1$	
20	Amount after first year = 1,00,000 + 11,000 = ₹ 1,11,00	0
	Principal for second year = ₹1,11,000 – ₹41,000	
	= ₹70,000	
	Interest for second year = $\frac{70,000 \times 11 \times 1}{100} = ₹7,700$	
	Amount after second year = ₹ 70,000 + 7,700 = 77,700	
	Amount outstanding for beginning of third year	
	= ₹77,700 - ₹47,700	
	= ₹ 30,000.	Ans.
(ቤ)) Dice is thrown once.	
<u>8</u> -4	Sample space = $\{1, 2, 3, 4, 5, 6\}$	
	$\therefore \qquad n(S) = 6$	
	(i) Number is even = $\{2, 4, 6\}$	
	$\therefore \qquad n(\mathbf{E}) = 3$	
	P (Even number) = $\frac{n(E)}{n(S)} = \frac{3}{6} = 1/2$	Ans.
5	(ii) Number is greater than $2 = \{3, 4, 5, 6\}$	
	$n(\mathbf{E}) = 4$	
	P (> 2) = $\frac{n(E)}{n(S)} = \frac{4}{6} = \frac{2}{3}$	Ans.

** Solution has not given due to out of present syllabus.

542 | ICSE Last 10 Years Solved Papers

Question 2.

- (a) Find x and y, if $\begin{bmatrix} 2x & x \\ y & 3y \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix}$ [3]
- (b) What least number must be added to each of the numbers 5, 11, 19 and 37 so that they are in proportion ? [3]
- (c) Given that x + 2 and x + 3 are factors of 2x³ + ax² + 7x b. Determine the values of a and b.
 [4]

Solution :

(a) Given:

$$\begin{bmatrix}
2x & x \\
y & 3y
\end{bmatrix}
\begin{bmatrix}
3 \\
2
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
6x + 2x \\
3y + 6y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
9 \\
9y
\end{bmatrix} =
\begin{bmatrix}
9 \\
9y
\end{bmatrix}$$
Ans.

(b) Let the number x be added to each number.

$$5 + x : 11 + x = 19 + x : 37 + x$$
$$\frac{5 + x}{11 + x} = \frac{19 + x}{37 + x}$$

By componendo and dividendo,

$$\Rightarrow \qquad \frac{5+x+11+x}{5+x-11-x} = \frac{19+x+37+x}{19+x-37-x}$$

$$\Rightarrow \qquad \frac{16+2x}{-6} = \frac{56+2x}{-18}$$

$$\Rightarrow \qquad 3(16+2x) = 56+2x$$

$$\Rightarrow \qquad 48+6x = 56+2x$$

$$\Rightarrow \qquad 4x = 8$$

$$\Rightarrow \qquad x = 2$$
Ans.

(c) Given : (x + 2) and (x + 3) are the factors of $2x^3 + 9x^2 + 7x - b$. $\therefore f(-2)$ and f(-3) will be zero.

$$f(x) = 2x^{3} + ax^{2} + 7x - b$$

$$f(-2) = 2(-2)^{3} + a(-2)^{2} + 7(-2) - b = 0$$

$$-16 + 4a - 14 - b = 0$$

$$4a - b = 30 \qquad \dots(1)$$

$$f(-3) = 2(-3)^{3} + a(-3)^{2} + 7(-3) - b = 0$$

$$-54 + 9a - 21 - b = 0$$

$$9a - b = 75 \qquad \dots(2)$$

Solving (1) and (2), we get

$$a = 9, b = 6$$
 Ans.

Mathematics, 2009 | 543

[3]

Question 3.

(a) Solve the inequation and represent the solution set on the number line.

$$-3 + x \le \frac{8x}{3} + 2 \le \frac{14}{3} + 2x, \text{ where } x \in I$$
 [3]

- (b) Find the value of p for which the lines 2x + 3y - 7 = 0 and 4y - px - 12 = 0 are perpendicular to each other.
- (c) In the given figure O is the centre of the circle, ∠ BAD = 75° and chord BC = chord CD. Find : (i) ∠ BOC (ii) ∠ OBD (iii) ∠ BCD. [4]

Solution :

(a)

$$-3 + x \le \frac{8x}{3} + 2 \le \frac{14}{3} + 2x, x \in I$$

$$-3 + x \le \frac{8x}{3} + 2 \le \frac{14}{3} + 2x, x \in I$$

$$\begin{vmatrix} -3 + x \le \frac{8x}{3} + 2 \le \frac{14}{3} + 2x, x \in I$$

$$\begin{vmatrix} -3 + x \le \frac{8x}{3} + 2 \le \frac{14}{3} + 2x, x \in I$$

$$\begin{vmatrix} \frac{8x}{3} - 2x \le \frac{14}{3} - \frac{2}{1} \\ \frac{8x}{3} - 2x \le \frac{14}{3} - \frac{2}{1} \\ \frac{8x - 6x}{3} \le \frac{14 - 6}{3} \\ \frac{2x}{3} \le \frac{8}{3} \\ x \ge -3 \end{vmatrix}$$
Solution set:

$$\{-3 \le x \le 4\}$$
(b) Given equation is $2x + 3y - 7 = 0$

$$\Rightarrow \qquad 3y = -2x + 7$$

$$\Rightarrow \qquad y = -\frac{2}{3}x + \frac{7}{3}$$
Slope of the line $(m_1) = -\frac{2}{3}$
Another equation is $4y - px - 12 = 0$

$$\Rightarrow \qquad 4y = px + 12$$

$$\Rightarrow \qquad y = \frac{p}{4}x + 3$$
Slope of the line $(m_2) = \frac{p}{4}$

544 | ICSE Last 10 Years Solved Papers As per the question, lines are perpendicular. $m_1 \times m_2 = -1$ $-\frac{2}{3}\times\frac{p}{4} = -1$ -2p = -12=> p = 6 \Rightarrow Ans. (c) Given : \angle BAD = 75°, chord BC = chord CD \angle BOD = 2 × \angle BAD = 2 × 75° = 150° $\angle BOC = \frac{1}{2} \angle BOD$ (i) $=\frac{1}{2} \times 150^\circ = 75^\circ$ Ans. $\angle \text{OBD} = \frac{1}{2}(180^\circ - 150^\circ)$ (ii) $= 15^{\circ}$ Ans. (iii) $\angle BCD = 180^{\circ} - 75^{\circ} = 105^{\circ}$ Ans.

Question 4.

(a) Find the mean, median and mode of the following distribution :

п

0

C

(b) Without using trigonometric tables evaluate the following :

$$\frac{\sec 17^{\circ}}{\csc 73^{\circ}} + \frac{\tan 68^{\circ}}{\cot 22^{\circ}} + \cos^2 44^{\circ} + \cos^2 46^{\circ}$$
[3]

(c) AC and BD are two perpendicular diameters of a circle with centre O. If AC = 16 cm, calculate the area and perimeter of the shaded part. (Take $\pi = 3.14$) [4] Solution :

(a) Mean
$$= \frac{\Sigma x}{n} = \frac{8+10+7+6+10+11+6+13+10}{9}$$

 $= \frac{81}{9} = 9$

For the median, we arrange the data in ascending order

6, 6, 7, 8, 10, 10, 10, 11, 13
Median =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term = $\left(\frac{9+1}{2}\right)^{\text{th}}$ term
= 5th term = 10

In the given data, 10 occurs maximum number of times, therefore

$$Mode = 10$$

(b) Given: $\frac{\sec 17^{\circ}}{\csc 73^{\circ}} + \frac{\tan 68^{\circ}}{\cot 22^{\circ}} + \cos^2 44^{\circ} + \cos^2 46^{\circ}$

Ans.

B

Ans.

Mathematics, 2009 | 545

A

Ans.

R

 $= \frac{\sec (90^\circ - 73^\circ)}{\csc 73^\circ} + \frac{\tan (90^\circ - 22^\circ)}{\cot 22^\circ} + \cos^2 (90^\circ - 46^\circ) + \cos^2 46^\circ$ $\operatorname{cosec} 73^\circ - \cot 22^\circ + \operatorname{rig}^2 46^\circ + \cos^2 46^\circ$

$$= \frac{1}{\cos 273^{\circ}} + \frac{1}{\cos 22^{\circ}} + \frac{1}{\sin^2 46^{\circ}} + \frac{1}{\cos^2 46^$$

=
$$1 + 1 + 1 = 3$$

(c) Given : AC = 16 cm = diameter of the circle, $\pi = 3.14$.

Area of shaded portion = 2 quadrant

Perimeter of the shaded portion $= \pi r + DB + AC$

 $= 3.14 \times 8 + 16 + 16$ = 57.12 cm. Ans.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) A shopkeeper bought a TV at a discount of 30% of the listed price of ₹ 24,000. The shopkeeper offers a discount of 10% of the listed price to his customer. If the VAT (Value Added Tax) is 10%.

Find : (i) the amount paid by the customer.

- (ii) the VAT to be paid by the shopkeeper. [3]
- (b) Solve the following quadratic equation and give the answer correct to two significant figures.

$$4x^2 - 7x + 2 = 0$$
 [3]

- (c) Use graph paper to answer this question.
 - (i) Plot the points A (4, 6) and B (1, 2)
 - (ii) A' is the image of A when reflected in X-axis.
 - (iii) B' is the image of B when B is reflected in the line AA'.
 - (iv) Give the geometrical name for the figure ABAB'.

Solution :

(a) (i)

$$Discount = 30\% \text{ on } 24,000$$

$$=\frac{30}{100} \times 24,000 = ₹7,200$$

Cost price of shopkeeper = 24,000 - 7,200

$$Tax @ 10\% = \frac{10 \times 16800}{100} = ₹ 1680$$

Amount paid by shopkeeper = 16,800 + 1,680 = ₹ 18,480

[4]

4000.сом

546 | ICSE Last 10 Years Solved Papers

Question 6.

[3]

[3]

[4]

- (a) In the given figure, ABC and CEF are two triangles where BA is parallel to CE and AF : AC = 5 : 8.
 - (i) . Prove that $\triangle ADF \sim \triangle CEF$.
 - (ii) Find AD if CE = 6 cm.
 - (iii) If DF is parallel to BC find area of $\triangle ADF$: area of $\triangle ABC$.

(b) Prove the following identity :

$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \operatorname{cosec} A$$

(c) The following table gives the wages of workers in a factor

Wages in ?	15 50			uers in u	factory :		12
	45-50	50-55	55-60	60-65	65-70	70-75	75 00
No. of workers	5	8	30			10-10	75-80
Calculate the men	m her all	<u> </u>	_ 30	25	14	12	6

Solution :

(a) In \triangle ABC and \triangle CEF,

and $\begin{array}{rcl}
& BA \parallel CE (given) \\
& \frac{AF}{AC} = \frac{5}{8} (given) \\
\Rightarrow & \frac{AF}{AF + FC} = \frac{5}{5 + 3} \\
\Rightarrow & \frac{AF}{FC} = \frac{5}{3} \\
(i) & \angle DAF = \angle FCE \\
& \angle AFD = \angle CFE \\
& \angle ADF - \triangle CEF
\end{array}$

(ii)

1

ž

$$\frac{AD}{CE} = \frac{AF}{FC} =$$

B C E

(Int. ∠) (Vert.) (AA similarity) **Proved**

$$\Rightarrow \frac{AD}{6} = \frac{5}{3}$$

 $AD \approx \frac{5}{3} \times 6 = 10 \text{ cm}$ Ans.

(iii) Given : DF || BC

 $\Delta \text{ ADF } \sim \Delta \text{ ABC}$ $\frac{\text{AF}}{\text{AC}} = \frac{\text{AD}}{\text{AB}} = \frac{5}{8}$ $\frac{\text{Area of } \Delta \text{ ADF}}{\text{Area of } \Delta \text{ ABC}} = \frac{\text{AD}^2}{\text{AB}^2} = \frac{(5)^2}{(8)^2} = \frac{25}{64}$ Ans.

548 | ICSE Last 10 Years Solved Papers

(b)

L.H.8	$S_{\cdot} = \frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A}$	
	$= \frac{\sin^2 A + 1 + \cos^2 A + 2 \cos A}{\sin A (1 + \cos A)}$	
	$= \frac{2 + 2 \cos A}{\sin A (1 + \cos A)} = \frac{2 (1 + \cos A)}{\sin A (1 + \cos A)}$	
	$= 2 \operatorname{cosec} A = R H S$	

Class interval	Class Marks	Proved		
45-50 50-55 55-60 60-65 65-70 70-75 75-80		$d_i = x_i - A$ - 15 - 10 - 5 0 5 10 15	Frequency fi 5 8 30 25 14 12	Froved f _i .d _i -75 -80 -150 0 70 120
ere, A = 62.5		13	$\frac{6}{\Sigma f_i \approx 100}$	$\frac{90}{\Sigma f_i d_i = -25}$
	45-50 50-55 55-60 60-65 65-70 70-75 75-80	$\begin{array}{ccccccc} 45-50 & 47\cdot 5 \\ 50-55 & 52\cdot 5 \\ 55-60 & 57\cdot 5 \\ 60-65 & 62\cdot 5 (A) \\ 65-70 & 67\cdot 5 \\ 70-75 & 72\cdot 5 \\ 75-80 & 77\cdot 5 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Mean = A +
$$\frac{\Sigma f_i d_i}{\Sigma f_i}$$
 = 62.5 + $\left(\frac{-25}{100}\right)$
= 62.5 - 0.25 = 62.25

 \mathbf{r}

Question 7.

(a) Amit Kumar invests ₹ 36,000 in buying ₹ 100 shares at ₹ 20 premium. The (i)

- The number of shares he buys
- (ii) His yearly dividend

(iii) The percentage return on his investment.

- Give your answer correct to the nearest whole number. (b) What sum of money will amount to ₹ 9,261 in 3 years at 5% per annum
- (c) Mr. Mishra has a Savings Bank Account in Allahabad Bank. His pass book

Date	Particulars	Withdrawals	5-120Ma - 121	
		(in ₹)	Deposits (in T)	Bàlance
Jan. 4, 2007	By Cash			(in 🎝
Jan. 11, 2007	By Cheque		1000.00	1000.00
Feb. 3, 2007	By Cash	- 1	3000.00	4000.00
Feb. 7, 2007	To Cheque	-	2500.00	6500.00
M. To see	S. S	2000.00		4500.00
May 1 05	By Cash		5000.00	2010/02/02/02/02/02/02/02/02/02/02/02/02/02
March 25, 2007	By Cash		and a strategy of the second se	9500.00
Iune 7, 2007	By Cash		2000.00	11,500.00
Access and access 1	To Cheque		3500.00	15000.00
ate of interest nai	10 Cheque	1000.00	<u> </u>	14000.00

te of interest paid by the bank is 4.5% per annum. Mr. Mishra closes his account on 30th October, 2007. Find the interest he receives. \$

[4]

f

Ans.

1

4000.сом

Mathematics, 2009 | 549 Solution : (a) MV of 1 share = $\P(100 + 20) = \P120$ Given : Dividend = 15%, Investment = 36,000 9 Number of shares buys = $\frac{\text{Investment}}{\text{MV}}$ (i) ŝ $=\frac{36,000}{120}=300$ Ans. Dividend on 1 share = $\mathbf{\overline{\xi}} \frac{15}{100} \times 100 = \mathbf{\overline{\xi}} 15$ (ii) Dividend on 300 shares $= 15 \times 300$ = ₹4,500 8. Ans. Rate of interest = $\frac{4,500}{36,000} \times 100$ (iii) ÷ = 12.5%Ans. (b) Given A = ₹ 9,261, T = 3 year, R = 5% $A = P \left(1 + \frac{R}{100} \right)^{T}$ $9,261 = P\left(1 + \frac{5}{100}\right)^3$ ⇒ $9,261 = P\left(\frac{21}{20}\right)^3$ \Rightarrow $P = \frac{9,261 \times 20 \times 20 \times 20}{21 \times 21 \times 21}$ = ₹8,000 Ans. (c) Qualifying amounts for interest for various months : January ₹ 1,000 P = ₹92,000 February ₹ 4,500 T = 1 monthMarch ₹ 9,500 R = 4.5%April ₹ 9,500 Interest = $\frac{P \times R \times T}{100}$ May ₹ 9,500 June ₹ 15,000 $=\frac{92,000\times4.5\times1}{100\times12}$ July ₹ 15,000

August

September

₹

₹

14,000

14,000

92,000

= ₹345 An

Ans.

.COM

			542 D	Mathematics, 2009 551
	(ii)	$AC \times BC = C$	CD^2	$(:: \Delta ACD \sim \Delta DCB)$
		$CD^2 =$	$16 \times 9 = 144$	(* 1112 1 202)
12 10	(1-1-1) (1-1-1)	CD =	12 cm.	Ans.
(c)	Given : Dian	neter $(AB) = 6$ cm, $r (OB) = 3$	$B \operatorname{cm} l (DB) =$	5 cm C
	(i) ,	$OD^2 = 1$	$DB^2 - OB^2$	Ă.
			25 – 9 = 16	/ \5 cm
		OD = 4	4 cm	Ans.
	(ii)	Volume of hemisphere =	2 3 ^{πσ-3}	ACTO
$\mathcal{S}_{\mathbf{f}}$		= 2	$\frac{2}{3} \times \frac{22}{7} \times (3)^3$	A <u>6 cm</u> C
÷			56·57 cm³.	
		Volume of cone $=\frac{1}{3}$	$\frac{1}{3}\pi r^2h = \frac{1}{3} \times \frac{22}{7}$	$4 \times 9 \times 4 = 37.71 \text{ cm}^3$
	1.	Volume of the solid $= 3$	87.71 + 56.57	
122	2		94·28 cm ³ .	Ans.
Que	stion 9, 💡		[·]	Aub.

(a) Attempt this question on graph paper.

Marks obtained by 200 students in examination are given below :

	5 10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of Students 5	10	14	21	25	34	36	27	16	10

Draw an Ogive for the given distribution taking 2 cm = 10 marks on one axisand 2 cm = 20 students on the other axis.

From the graph find :

- (i) the Median
- (ii) the Upper Quartile
- (iii) Number of students scoring above 65 marks.

2.,

- (iv) If 10 students qualify for merit scholarship, find the minimum marks required to qualify. [6]
- (b) From two points A and B on the same side of a building, the angles of elevation of the top of the building are 30° and 60° respectively. If the height of the building is 10m, find the distance between A and B correct to two decimal places. [4]

Solution :

(a)	Marks	No. of students	cf
	0-10	5 .	5
	10-20	10	15
	20–30 ·	14	29
	30-40	21	50
	40-50	25	75
	50-60	34	109
2	60-70	36	145
55	70-80	. 27	172
	80-90	16	188
L	90-100	12	200

Mathematics, 2009 | 553

Question 10.

5

- (a) Mrs. Goswami deposits ₹ 1000 every month in a recurring deposit account for 3 years at 8% interest per annum. Find the matured value.
 [3]
- (b) Find the equation of a line with x intercept = 5 and passing through the point (4, -7). [3]
- (c) In a school the weekly pocket money of 50 students is as follows :

Weekly pocket money in ₹	40-50	50-60	60-70	70-80	80-90	90-100
No. of students	2	8	12	14	8	6

Draw a histogram and a frequency polygon on the same graph. Find the mode from the graph. [4]

Solution :

⇒

 \Rightarrow

(a) Total Principal (P) for 1 month

$$P = x \times \frac{n (n + 1)}{2} = 1000 \times \frac{36 \times 37}{2}$$

= ₹ 6,66,000
Interest for 1 month = $\frac{PRT}{100} = \frac{6,66,000 \times 8 \times 1}{100 \times 12}$

Total amount deposited by Mr. Goswami = 36 × 1000 = ₹ 36,000

Maturity value = ₹ 36,000 + 4,440

= ₹40,440

(b) Equation of the line passing through (5, 0) and (4, -7):

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
$$y - 0 = \frac{-7 - 0}{4 - 5} (x - 5)$$
$$y = \frac{-7}{-1} (x - 5)$$
$$y = 7 (x - 5)$$
$$y = 7x - 35$$
$$7x - y - 35 = 0$$

Ans.

Ans.

4

Question 11.

- If the height of the model is 80 cm, find the actual height of the building in metres.
- (ii) If the actual volume of a tank at the top of the building is $27m^3$, find the volume of the tank on the top of the model. (2]
- (b) The speed of an express train is x km/h and the speed of an ordinary train is 12 km/h less than that of the express train. If the ordinary train takes one hour longer than the express train to cover a distance of 240 km, find the speed of the express train. [4]
- (c) Using ruler and compasses construct
 - (i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
 - (ii) the locus of points equidistant from A and C.
 - (iii) a circle touching AB at A and passing through C. [4]

Solution :

(a) Scale factor
$$k = \frac{1}{30}$$

(i)

Height of the model = k (times the height of the building)

Height of building = 80×30

 $= 2400 \,\mathrm{cm}$

$$= 24 m$$

Ans.

				Mathematics, 2009	655
	(ii)	Volume of model	Ŧ	k^3 times volume of the building	
			H	$\frac{1}{30} \times \frac{1}{30} \times \frac{1}{30} \times 27 \text{ m}^3$	
			=	$\frac{1}{1000} m^3 = 0.001 m^3 \qquad \qquad A$	ns.
(b)	ä	Time taken by express train	Ħ	$\frac{240}{x}$ h	
		Speed of ordinary train	Ŧ	(x - 12) km/h	
		Time taken by ordinary train	H	$\frac{240}{x-12}$	
	Ac	cording to the question, $\frac{240}{x}$	=	$\frac{240}{x-12}-1$	
	⇒	240(x-12)	=	240 x - x (x - 12)	
	⇒	240x - 2880	=	$240 x - x^2 + 12x$	
	⇒	$x^2 - 12x - 2880$	=	0	
	⇒	$x^2 - 60x + 48x - 2880$	=	0	
	⇒	x(x-60) + 48(x-60)			
	⇒	(x-60)(x+48)			62
	eit			x+48=0	
	⇒	x = 60	or	x = -48	ns.
	He	nce, the speed of express train i	s 6	0 km/h.	
(c)	Ste	eps of construction :		Х , В	
	1.	Draw \triangle ABC with given values		5.5 cm 3.4 c	m
	2.	Draw XY perpendicular bisected	ог с		
	3.	Draw perpendicular of AB perpendicular XY at O.	at		

4. Draw a circle at centre O which touching AB at A and passing through C *i.e.*, required circle.

For more sample papers visit : www.4ono.com