Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 12th Mathematics 2015 Unsolved Paper Outside Delhi

Buy Solution: http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers/

[^0]
CBSE 12th Mathematics 2015 Unsolved Paper Outside Delhi
 TIME - 3HR. QUESTIONS - 26

THE MARKS ARE MENTIONED ON EACH QUESTION

SECTION - A

Question number to Gocarrys mark
Q.1. Write the value of: 1 mand

$$
\Delta=\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
-3 & -3 & -3
\end{array}\right|
$$

Q.2. write the sum of the order and degree of the following differential equation: 1 marks

$$
\frac{d}{d x}\left\{\left(\frac{d y}{d x}\right)^{3}\right\}=0
$$

Q.3. Write the integrating factor of the following differential equation: mark

$$
\left(1+y^{2}\right)+(2 x y-\cot y) \frac{d y}{d x}=0
$$

Q.4. if \widehat{a}, \widehat{b} and \hat{c} are mutually perpen - dicular unit vectors, then find the value of

$$
|\mathbf{2} \widehat{\boldsymbol{a}}+\widehat{\boldsymbol{b}}+\widehat{\boldsymbol{c}}| \text { Marks }
$$

Q.5. Write a unit vector perpendicular to both the vectors $\overrightarrow{\boldsymbol{a}}=\widehat{\boldsymbol{\imath}}+\widehat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=\widehat{\boldsymbol{\imath}}+\widehat{\boldsymbol{\jmath}} 1$ mark
Q.6. The equation of a line are $5 x-3=15 y+7=3-10 z$. Write the direction cosines of the line. 1 mark

SECTION - B
Question number 7 to 19 carry 4 marks each.
Q.7. To promote the making of toilets for women, an organization tried to generate awareness through (i) house calls (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) Rs 50
(ii) Rs 20
(iii) Rs 40

The number of attempts made in three villages X, Y, and Z are given below:
(i) (ii) (iii)

X	$\mathbf{4 0 0}$	$\mathbf{3 0 0}$	$\mathbf{1 0 0}$
\mathbf{Y}	$\mathbf{3 0 0}$	$\mathbf{2 5 0}$	$\mathbf{7 5}$
\mathbf{Z}	$\mathbf{5 0 0}$	$\mathbf{4 0 0}$	$\mathbf{1 5 0}$

Find the total cost incurred by the organization for the three villages separately, using matrices.

Write one value generated by the organization in the society. 4 marks
Q.8. Solve for $\boldsymbol{x}: 4$ marks

$$
\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}
$$

OR

Prove the following:

$$
\begin{aligned}
& \cot ^{-1}\left(\frac{x y+1}{x y-1}\right)+\cot ^{-1}\left(\frac{y z+1}{y-z}\right)+\cot ^{-1}\left(\frac{z x+1}{z-x}\right)=0 \\
& (0<x y, y z, z x<1)
\end{aligned}
$$

Q.9. Using properties of determinants, prove the following: 4 marks

$$
\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2} & c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

Q.10. Find the adjoint of the matrix 4 marks

$$
A=\left(\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)
$$

$$
\text { A. }(\operatorname{adj} \mathbf{A})=|\mathbf{A}| \mathbf{I}_{3}
$$

Q.11. Show that the function $f(x)=|x-1|+|x+1|$, for all $x \in \mathbb{R}$, is not differentiable at the points $\boldsymbol{x}=-\mathbf{1}$ and $\boldsymbol{x}=\mathbf{1} .4$ marks
Q.12. If $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{m} \boldsymbol{\operatorname { s i n }}^{-1} \boldsymbol{x}}$, then show that: 4 marks

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0
$$

Q.13. If $f(x)=\sqrt{x^{2}+1} ; g(x)=\frac{x+1}{x^{2}+1}$ and $h(x)=2 x-3$, then find $f^{\prime}\left[h^{\prime}\left\{g^{\prime}(x)\right\}\right]$. 4 Marks
Q.14. Evaluate: 4 marks

$$
\int(3-2 x) \cdot \sqrt{2+x-x^{2} d x}
$$

OR

Evaluate:

$$
\int \frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+2)} d x
$$

Q.15. Find: 4 marks

$$
\int_{0}^{\pi / 4} \frac{d x}{\cos ^{3} x \sqrt{2 \sin 2 x}}
$$

Q.16. Find:

$$
\int \frac{\log x}{(x+1)^{2}} d x
$$

Q.17. If $\overrightarrow{\boldsymbol{a}}=\widehat{\boldsymbol{\imath}}+2 \widehat{\jmath}+\widehat{\boldsymbol{k}}, \overrightarrow{\boldsymbol{b}}=2 \widehat{\imath}+\widehat{\jmath}$ and $\overrightarrow{\boldsymbol{c}}=3 \widehat{\boldsymbol{\imath}}-4 \widehat{\jmath}-5 \widehat{\boldsymbol{k}}$, then find a unit vector perpendicular to both of the vectors $(\vec{a}-\vec{b})$ and $(\vec{c}-\vec{b})$.
Q.18. Find the equation of a line passing through the point $(1,2,-4)$ and perpendicular to two lines. 4 marks

$$
\begin{aligned}
& \vec{r}=(8 \hat{\imath}-19 \hat{\jmath}+10 \widehat{k})+\lambda(3 \hat{\imath}-16 \hat{\jmath}+7 \widehat{k}) \text { and } \vec{r}=(15 \hat{\imath}+29 \hat{\jmath}+5 \widehat{k})+ \\
& \mu(3 \hat{\imath}+8 \hat{\jmath}-5 \widehat{k}) .
\end{aligned}
$$

OR

Find the equation of the plane passing through the points $(-1,2,0),(2,2,-1)$ and parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$
Q.19. Three cards are drawn successively with replacement from a well shuffled pack of 53 cards. Find the probability distribution of the number of spades. Hence find the mean of the distribution.

OR

For 6 trials of an experiment, let X be a binomial variate which satisfies the relation $9 P(X=4)=P(X=2)$. Find the probability of success.

SECTION - C
Q.20. Consider $f: \mathbb{R}_{+}^{+}[-9 \infty]$ give by $f(x) 5 x^{2}+6 x-9$. Prove that f is invertible with: 6 marks

$$
f^{-1}(y)=\left(\frac{\sqrt{54+5 y}-3}{5}\right)
$$

OR

A binary operation * is defined on the set $X=R-\{-1\}$ by $x * y=x+y+$ $x y, \forall x, y \in X$. Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X.
Q.21. Find the value of p for which the curves $x^{2}=9 p(9-y)$ and $x^{2}=p(y+1)$ cut each other at right angles. 6 marks
Q.22. Using integration, prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $\boldsymbol{x}=\mathbf{0}, \boldsymbol{x}=4, \boldsymbol{y}=4$, and $\boldsymbol{y}=\mathbf{0}$ into three equal parts. 6 marks
Q.23. Show that the differential equation

$$
\frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}}
$$

is homogeneous and also solve it.

OR

Find the particular solution of the differential equation $\left(\tan ^{-1} y-x\right) d y=$ $\left(1+y^{2}\right) d x$, given that $x=1$ when $y=0$.
Q.24. Find the distance of the point $P(3,4,4)$ from the point, where the line joining the points $A(3,-4,-5)$ and $B(2,-3,1)$ intersects the plane $\mathbf{2 x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{7}$. 6 marks
Q. 25. A company manufactures three kinds of calculators: A, B and C in its two factories I and II. The company has got an order for manufacturing at least 6400 calculators of kind C. The daily output of factory I is of 50 calculators of kind $A, 50$ calculators of kind B and 30 calculators of kind C, The daily output of factory $I I$ is of 40 calculators of kind $A, 20$ of kind B and 40 of kind C. The cost per day to run factory I is Rs 12,000 and of factory II is Rs 15,000 . How many days do the two factory have to be in operation to produce the order with the minimum cost $\boldsymbol{?}$ formulate this problem as an LPP and solve it graphically. 6 marks
Q. 26. In a factory which manufactures bolts, machines A, B and C manufacture respectively $30 \%, 50 \%$ and 20% of the bolts. Of their outputs 3,4 and 1 percent respectively are defective bolts. A bolt is drawn at random from the product and is found to be defective. find the probability that this is not manufactured by machine B. 6 marks

Buy Solution: http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers/

[^0]: Note
 This pdf file is downloaded from www.4ono.com. Editing the content or publicizing this on any blog or website without the written permission of Rewire Media is punishable, the suffering will be decided under

