Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 12th Mathematics 2012 Unsolved Paper Outside Delhi

Buy Solution: http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers/

[^0]
CBSE 12th Mathematics 2012 Unsolved Paper Outside Delhi
 TIME - 3HR. | QUESTIONS - 29

THE MARKS ARE MENTIONED ON EACH QUESTION

SECTION - A

Question numbers 1 to 10 carry 1 mark each.

Q.1. The binary operation $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$, is defined as $\mathbf{a} * \mathbf{b}=\mathbf{2 a}+\mathbf{b}$. find (2*3)*4. 1 mark
Q.2. Find the principle value of 1 mark

$$
\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)
$$

Q.3. find the value of $\boldsymbol{x}+\mathbf{y}$ from the following equation: 1 mark

$$
2\left[\begin{array}{cc}
x & 5 \\
7 & y-3
\end{array}\right]+\left[\begin{array}{cc}
3 & -4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
7 & 6 \\
15 & 14
\end{array}\right]
$$

Q.4. if $A^{T}\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$. then find $A^{T}-B^{T}$.
Q.5. Let A be a square matrix of order 3×3. Write the value of $|2 A|$, where $|A|=4$. 1 mark Q.6. Evaluate:

$$
\int_{0}^{2} \sqrt{4-x^{2}} d x
$$

Q.7. Given $\int e^{x}(\tan x+1) \sec x d x=e^{x} f(x)+c$

Write $f(x)$ satisfying above
Q.8. write the value of ($\hat{\boldsymbol{i}} \mathbf{X} \hat{\boldsymbol{\jmath}}) . \widehat{\boldsymbol{k}}+\hat{\boldsymbol{i}} . \hat{\boldsymbol{\jmath}}$. I mark
Q.9. Fine the scalar components of the vector $\overline{A B}$ with initial $A(2,1)$ and terminal point B (-5, 7). 1 mark
Q.10. Find the of the plane $\mathbf{3 x}-\mathbf{4 y}+\mathbf{1 2 z}=\mathbf{3}$ from the origin. 1 mark

SECTION - B
Question numbers 11 to 22 carry 4 marks each.
Q.11. prove the following: 4 marks

$$
\cos \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)=\frac{6}{5 \sqrt{13}}
$$

Q.12. Using properties of determinates, show that 4 marks

$$
\left|\begin{array}{ccc}
b+c & a & a \\
b & c+a & b \\
c & c & a+b
\end{array}\right|=4 a b c
$$

Q.13. Show that $\boldsymbol{f}: \boldsymbol{N} \rightarrow \boldsymbol{N}$, given by, 4 marks

$$
f(x)=\left\{\begin{array}{ll}
x+1, & \text { if } x \text { is odd } \\
x-1, & \text { if } x \text { is even }
\end{array}\right. \text { is both one-one and onto. }
$$

OR

Consider the binary operations* : $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined as $\mathbf{a} * \mathbf{b}=|\boldsymbol{a}-\boldsymbol{b}|$ and a ob $=\mathbf{a}$ for all $a, b \in R$. show that ${ }^{\prime *}$ ' is commutative but not associative ' 0 ' is associative but not commutative.
Q.14. If,

$$
x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}, \text { show that } \frac{d y}{d x}=-\frac{y}{x} .
$$

OR

Differentiate

$$
\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right] \text { with respect } x .
$$

Q.15. If $\boldsymbol{x}=\mathbf{a}(\boldsymbol{\operatorname { c o s }} \boldsymbol{t}+\boldsymbol{t} \sin \boldsymbol{t})$ and 4 marks

$$
\begin{gathered}
y=a(\sin t-t \cos t), 0<t<\frac{\pi}{2}, \text { find } \\
\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}} \text { and } \frac{d^{2} y}{d x^{2}}
\end{gathered}
$$

Q.16. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$. how fast is its height on the wall decreasing when the fool of the ladder is 4 m away from the wall?
Q.17. Evaluate: 4 marks

$$
\int_{-1}^{2}\left|x^{3}-x\right| d x
$$

OR

Evaluate:

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

Q.18. From the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

OR

Find the particular solution of the differential equation

$$
\frac{x\left(x^{2}-1\right) d y}{d x}=1 ; y=0 \text { when } x=2
$$

Q.19. solve the following differential equation: 4 marks

$$
\left(1+x^{2}\right) d y+2 x y d x=\cot x d x ; x \neq 0
$$

Q. 20. Let $\overrightarrow{\boldsymbol{a}}=\widehat{\imath}+4 \widehat{\jmath}+2 \widehat{k}, \vec{b}=3 \widehat{\imath}-2 \widehat{\jmath}+7 \widehat{k}$ and $\vec{c}=2 \widehat{\imath}-\widehat{\jmath}+4 \widehat{k}$.

Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.
Q. 21. Find the coordinates of the point where the line through the point $A(3,4,1)$ and B $(5,1,6)$ crosses the XY-plane.
Q. 22. Two cards are drawn simultaneously (without replacement) from a well- shuffled pack of $\mathbf{5 2}$ cards. Find the mean and variance of the number of red cards. 4 marks

SECTION-C

Question numbers 23 to 29 carry 6 marks each.

Q. 23. Using matrices, solve the following system of equation:

$$
\begin{gathered}
2 x+3 y+3 z=5, x-2 y+z=-4 \\
3 x-y-2 z=3
\end{gathered}
$$

Q. 24. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone. 6 marks

OR
An open box with a square base is to be made out of a given quantity of cardboard of area c^{2} square units. Show that maximum volume of the box is

$$
\frac{c^{3}}{6 \sqrt{3}} \text { cubic units. }
$$

Q. 25. Evaluate:

$$
\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x
$$

OR

Evaluate:

$$
\int \frac{x^{2}+1}{(x-1)^{2}(x+3)} d x
$$

Q. 26. Find the area of the region 6 marks

$$
\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}
$$

Q. 27. If the line

$$
\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2} \text { and } \frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5} \text { are perpendicular, }
$$

Find the value of k and hence find the equation of plane containing these lines. 6 marks
Q. 28. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin 3 times and notes the number of heads. If she gets $\mathbf{1 , 2 , 3}$ or 4 she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw $1,2,3$ or 4 with the die?
Q. 29. A dietician wishes to mix two types of Foods in such a way that the vitamin contents of the mixture contains at least 8 units of vitamin A and 10 units of vitamin C. Food I contains 2 units $/ \mathrm{kg}$ of vitamin A and 1 unit/kg of vitamin C while Food II contains 1 unit/kg of vitamin A and 2 unit/kg of vitamin C. It costs Rs5 per kg to purchase food I and Rs7 per kg to purchase Food II. Determine the minimum cost of such a mixture. Formulate the above as a LPP and solve it graphically. 6 marks

Buy Solution: http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers/

[^0]: Note
 This pdf file is downloaded from www.4ono.com. Editing the content or publicizing this on any blog or website without the written permission of Rewire Media is punishable, the suffering will be decided under

