

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 12th Chemistry 2012 Unsolved Paper Delhi Board

Buy Solution: http://www.4ono.com/cbse-12th-chemistry-solved-previous-year-papers/

Note

This pdf file is downloaded from <u>www.4ono.com</u>. Editing the content or publicizing this on any blog or website without the written permission of <u>Rewire Media</u> is punishable, the suffering will be decided under DMCA

CBSE 12th Chemistry 2012 Unsolved Paper Delhi Board

TIME - 3HR. | QUESTIONS - 30

THE MARKS ARE MENTIONED ON EACH QUESTION

SECTION - A

- Q.1. What is meant by 'doping' in a semiconductor? I mark
- Q.2. What is the role of graphic in the electrometallurgy of aluminum? 1 m
- Q.3. Which one of PCl₄⁺ is not likely and why? 1 mark
- **Q.4. Five the IUPAC name of the following compound**. I man $CH_2 = C CH_2Br$
- Q.5. Draw the structural formula of-2 ol molecule. I mar
- Q.6. Arrange the following compound in an increasing order of their reactivity in nucleophilic addition reactions: Ethanol, Propanal, butanone, propanone. 1 mark
- Q.7. Arrange the following in the decreasing order of their strength in aqueous solutions: CH₃NH₂, (CH₃)₂ NH, (CH₃)₃ and NH₃ 1 mark
- Q.8. Define the term, 'homopoly-merisation' Giving example. I mar

SECTION - B

Q.9. A 1.00 molal aqueous solution of trichloroactic acid (CCl_3COOH) is its boiling point. The solution has the boiling point of 100. $18^{0}C$. Determine the Van't Hoff factor for trichloro-acetic acid. ($K_b for water = 0.512 \ K \ Kg \ mol^{-1}$) 2 marks

Or

Define the following terms: (i) Mole fraction (ii) Isotonic solutions (iii) Van't Hoff factor (iv) Ideal solution

- Q.10. What do you understand by the order of a reaction'? Identify the reaction order from each of the following units of reaction rate constant: 2 marks
 (i) L⁻¹mol S¹
 (ii) Lmol⁻¹ S⁻¹
- Q.11. Name the two group into which phenomenon of catalysis can be divided. Give an example of each group with the chemical equation involved. 2 marks
- Q.12. What is meant by coagulation of colloidal solution? Describe briefly and three methods by which coagulation of lyophobic sols can be carried out. 2 marks
- Q.13. Describe the principle involved in each of the following processes. 2 mark(i) Mond process for refining of Nickel.
 - (ii) Column chromatography for purification of rate elements.
- Q.14. Explain the following giving higher oxidation reason in each case. 2 marks
 (i) O₂ and F₂ both stabilize higher oxidation states of metals but O₂ exceeds F₂ in doing so.
 - (ii) structure of Xenon fluorides cannot be explained by Valence Bond Approach.
- Q.15. Complete the following chemical equations: 2 marks (i) $Cr_2O_7^{2^-} + H^+ + I^+ \rightarrow$ (ii) $MnO_4^- + NO_2^- + H^+ \rightarrow$
- Q.16. What is meant by 2 mark (i) Peptide linkage (ii) biocatalyst?
- Q.17. Write any two reactions of glucose which cannot be explained be the open chain structure of glucose molecule. 2 marks
- Q.18. Draw the structure of the monomer for each of the following polymers: 2 marks (i) Nylon6
 - (ii) Polypropene
- Q.19. Tungsten crystallizes in body centered cubic unit cell. If the edge of the unit cell is 316.5 pm, what is the radius of tungsten atom? 3 marks

SECTION - C

Or

Iron has a body centered cubic unit cell with a cell dimension of 286.65 pm. The density of iron is 7.874 g cm^{-3} . Use this information to calculate Avogadro's number. (At. Mass of Fe=55.845 u)

Q.20. Calculate the amount of KCl which must be added to 1 kg of water so that the freezing point is depressed by 2k. (K_f for water = 1.86 K Kg mol⁻¹) 3 mark

Q.21. For the reaction $2NO_{(g)} + Cl_2(g) \rightarrow 2 NOCl_{(g)}$ the following date were collected. Al the measurements were taken at 263K: 3 marks

4 2 2	Experiment No.	Initial [NO]	(M)	Initial rate of disappearance of cl2 (M/min)
10 m	ward and and and a source and a	0.15 0.15 0.30 0.25	0.15 mm 0.15 mm 0.13 mm 0.13 mm 0.15 mm 0.15 mm 0.15 mm 0.15 mm 0.15 mm 0.15 mm 0.25 m	*1.20***********************************

(a) Write the expression for rate law.

(b) Calculate the value of rate constant and specify its units

(c) What is the initial rate of

Disappearance of Cl_2 **in exp. 4**?

Q.22. How would you account for the following? 3 marks

- (i) Many of the transition elements are known to form interstitial compounds.
- (ii) the metallic radii of the third (5d) series of transition metal are virtually the same as those of the corresponding group members of the second (4d) series.
- (iii) Lanthanoids from primarily +3 ions, while the actinoids usually have higher oxidation states in their compounds, +4 or even +6 being typical.
- Q.23. Give the formula of each of the following coordination entities: 3 marks
 - (i) CO^3 ion is bound to one cl^- , one NH_3 molecules and two bidentate enthylene diamine (en) molecules.
 - (ii) Ni²⁺ ion is bound to two water molecules and two oxalate ions.
 Write the name and magnetic behavior of each of the above coordination entities. (At. Nos. Co=27, Ni =28)
- Q.24. Although chlorine is an electron withdrawing group, yet it is ortho-, para-directing in electrophilic aromatic substitution reactions. Explain why it is so? 3 marks
- Q.25. Draw the structure and name the product formed if the following alcohols are oxidized. Assume that an excess of oxidizing agent is used. *3 marks*
 - (i) CH₃CH₂CH₂CH₂OH
 (ii) 2-butenol
 (iii) 2-methyl-1-propanol
- Q.26. Write chemical equations for the following conversion: 3 mar

(i) Nitrobenzene to benzoic acid.

- (ii) Benzyl chloride to 20phenylethanamine.
- (iii) Aniline to benzyl alcohol.
- Q.27. What are the following substances? Give on example of each one of them. 3 mar
 - (i) Tranquilizers
 - (ii) Food preservatives
 - (iii) Synthetics detergents

SECTION - D

- Q.28. (a) What type of a battery is the lead storage battery? Write the anode and the cathode reactions and the overall reaction occurring in lead storage battery when current is drawn from it. 5 marks
 - (b) In the button cell, widely used in watches, the following reaction takes place

 $Zn_{(s)} + Ag_2O_{(s)} + H_2O_{(l)} \rightarrow Zn^{2+} (aq) + 2Ag_{(s)} + 2OH_{(aq)}^-$ Determine E^0 and ΔG^0 for the reaction. (given: $E^0_{Ag^+/Ag} = + 0.80V, E^0_{\frac{2n^{2+}}{2n}} = -0.76V$)

(a) Define molar conductivity of a solution and explain how molar conductivity changes with change in concentration of solution for a weak and a strong electrolyte.

 $\mathbf{0r}$

- (b) The resistance of conductivity cell containing 0.001 M KCl solution at 298 K is 1500 Ω . What is the cell constant if the conductivity of 0.001 M KCl solution at 298 K is 0.146 × | 10⁻³ S Cm⁻¹?
- Q.29. (a) Complete the following chemical reaction equations: 5 marks
 - (i) $P_4 + SO_2 Cl_2 \rightarrow$ (ii) $XeF_6 + H_2O \rightarrow$
 - (b) Predict the shape and the asked angle $(90^{\circ} \text{ or more or less})$ in each of the following cases:
 - (i) SO_3^{2-} and the angle O-S-O
 - (ii) ClF_3 and the angle F Cl F
 - (iii) XeF_2 and the angle F Xe F

Or

(a) Complete the following chemical equations:

(i)
$$NaOH + Cl_2 \rightarrow (hot and cone.)$$

(ii)
$$XeF_4 + O_2F_2 -$$

(b) Draw the structures of the following molecules:

4ono.com

(i) H₃PO₂
(ii) H₂S₂O₇
(iii) XeOF₄

4ono.com

4ono.com

no.com

Q.30. Illustrate the following name reactions giving suitable example in each case: 5 mark

4ono.com

4ono.com

4ono.com

- (i) Clemmensen reduction
- (ii) Hell-Volhard-Zelinsky reaction
- (b) How are the following conversions carried out?
 - (i) Ethylcyanide to ethanoic acid.
 - (ii) Butanol to Butanoic acid
 - (iii) Benzoic acid to m-bromobenzoic acid

Or

(a) Illustrate the following reactions suitable example for each.

- (i) Cross aldol condensation
- (ii) Decarboxylation
- (b) Give simple tests to distinguish between the following pairs of compounds
 - (i) Pentan-2-one and pentan-3-one
 - (ii) Benaldehyde and acetophenone
 - (iii) Phenol and benzoic acid

Buy Solution: http://www.4ono.com/cbse-12th-chemistry-solved-previous-year-papers/