

Perfect solution to all problems

Tips, Tricks, General Knowledge, Current Affairs, Latest Sample, Previous Year, Practice Papers with solutions.

CBSE 12th Mathematics 2017 Unsolved Paper Delhi Board

Buy solution: http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers

Note

This pdf file is downloaded from <u>www.4ono.com</u>. Editing the content or publicizing this on any blog or website without the written permission of <u>Rewire Media</u> is punishable, the suffering will be decided under DMCA

CBSE 12th Mathematics 2017 Unsolved Paper Delhi Board

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

TIME - 3HR. | QUESTIONS - 29

THE MARKS ARE MENTIONED ON EACH QUESTION

SECTION - A

4ono.com

Question numbers 1 to 4 carry 1 mark each.

4ono.com

4ono.com

4ono.com

4ono.com

Question 1:

If A is a 3 × 3 invertible matrix, then what will be the value of k if $det(A^{-1}) = (det A)^k$. Imark

Question 2:

Determine the value of the constant 'k' so that the function Imar

$$f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0\\ 3, & \text{if } x \ge 0 \end{cases} \text{ is continuous at } x = 0$$

Question 3:

Evaluate:
$$\int_2^3 3^x dx$$
 1 mark

Question 4:

If a line makes angles 90° and 60° respectively with the positive directions of x and y axis, find the angle which it makes with the positive direction of z-axis. *Imark*

SECTION - B

Question numbers 5 to 12 carry 2 mark each.

Question 5:

Show that all the diagonal elements of a skew symmetric matrix are zero. 2 mark

Question 6:

4ono.com

4ono.com

4ono.com

4ono.com

Find
$$\frac{dy}{dx}$$
 at $x = 1$, $y = \frac{\pi}{4}$ if $\sin^2 y + \cos xy = K 2$ mark

4ono.com

4ono.com

Question 7:

The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2cm. 2 marks

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

Question 8:

Show that the function $f(x) = 4x^3 - 18x^2 + 27x - 7$ is always increasing on R. 2 marks

Question 9:

Find the vector equation of the line passing through the point A(1, 2, -1) and parallel to the line 5x - 25 = 14 - 7y = 35z. 2 marks

Question 10:

Prove that if E and F are independent events, then the events E and F' are also independent. 2 marks

Question11:

A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is ₹ 100 and that on a bracelet is ₹ 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit? It is being given that at least one of each must be produced. 2 marks

Question12:

Find: 2 marks

$$\int \frac{dx}{x^2 + 4x + 8}$$

SECTION - C

Question numbers 13 to 23 carry 4 mark each.

Question13:

Prove that
$$\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} = \frac{2b}{a} 4 \text{ mark}$$

Question14:

Using properties of determinants, prove that 4 marks

$$\begin{vmatrix} x & x+y & x+2y \\ x+2y & x & x+y \\ x+y & x+2y & x \end{vmatrix} = 9y^2(x+y)$$

4ono.com

4ono.com

OR

Let
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$, Find a matrix D such that $CD - AB = 0$

Question15:

Differentiate the function $(\sin x)^x + \sin^{-1}\sqrt{x}$ with respect to x. 4 marks

OR

If
$$x^m y^n = (x + y)^{m+n}$$
, prove that $\frac{d^2 y}{dx^2} = 0$.

Question 16:

Find: 4 marks

$$\int \frac{2x}{(x^2+1)(x^2+2)^2} dx$$

Question 17:

Evaluate: 4 marks

 $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, dx$

0

4ono.com

4ono.com

Evaluate:

4ono.com

 $\int_0^{3/2} |x \sin \pi x| dx$

4ono.com

Question 18:

Prove that $x^2 - y^2 = c(x^2 + y^2)^2$ is the general solution of the differential equation $(x^3 - 3xy^2)dx = (y^3 - 3x^2y)dy$, where C is a parameter. 4 marks

Question 19:

Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$, then

(a) Let $c_1 = -1$ and $c_2 = 2$, find c_3 which makes \vec{a}, \vec{b} and \vec{c} coplanar.

(b) If $c_2 = -1$ and $c_3 = 1$, 4 marks

show that no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar.

Question 20:

 $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} . Also, find the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} or \vec{b} or \vec{c} . 4 marks

Question 21:

The random variable X can take only the values 0, 1, 2, 3. Given that P(X = 0) = P(X = 1) = p and P(X = 2) = p(X = 3) such that $\sum p_i x_i^2 = 2 \sum p_i x_i$, find the value of p. 4 marks

Question 22:

Often it is taken that a truthful person commands, more respect in the society. A man is known to speak the truth 4 out of 5 times. He throws a die and reports that it is a six.

Find the probability that it is actually a six. 4 marks

Do you also agree that the value of truthfulness leads to more respect in the society?

Question 23:

4ono.com

4ono.com

4ono.com

Solve the above LPP graphically. 4 marks

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

4ono.com

Minimize Z = 5x + 10y

Subject to $x + 2y \le 120$

the constraints $x + y \ge 60$

 $x-2y\geq 0$

and $x, y \ge 0$

SECTION - D

Question numbers 24 to 29 carry 6 mark each.

Question 24:

	[1]	-1	2]	[-2	0	1	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
Use product	0	2	-3	9	2	-3	to solve the system of equations 6 marks
111	13	-2	4	6	1	-2	and a state of the second
x	+ 32	z = 9	-x +	2y -	2z	= 4,	2x - 3y + 4z = -3.

Question 25:

Consider
$$f: \mathbb{R} \to [-5, \infty)$$
 given by $f(x) = 9x^2 + 6x - 5$. 6 marks

Show that f is invertible with $f^{-1}(y) = \left(\sqrt{\frac{y+6-1}{3}}\right)$

Hence Find

(i)
$$f^{-1}(y)$$

(ii)
$$y$$
 if $f^{-1}(y) = \frac{4}{2}$,

Where R_+ is the set of all non-negative real numbers.

OR

Discuss the commutativity and associativity of binary operation '*' defined on $A = Q - \{1\}$ by the rule a * b = a - b + ab for all $a, b \in A$. Also find the identity element of * in A and hence find the invertible elements of A.

Question 26:

4ono.com

4ono.com

4ono.com

If the sum of lengths of the hypotenuse and a side of a right angled triangle is given show that the area of the triangle is maximum, when the angle between them is $\frac{\pi}{3}$ 6 marks

4ono.com

4ono.com

4ono.com

Question 27:

Using integration, find the area of region bounded by the triangle whose vertices are (-2, 1), (0, 4) and (2, 3). 6 marks

OR

Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $\sqrt{3y} = x$ in the first quadrant, using integration.

Question 28:

Solve the differential equation $x \frac{dy}{dx} + y = x \cos x + \sin x$, given that y = 1 when $x = \frac{\pi}{2} 6$ marks

Question 29:

Find the equation of the plane through the line of intersection of

 $\vec{r}.(2\hat{i}-3\hat{j}+4\hat{k}) = 1$ and $\vec{r}.(\hat{i}-\hat{j}) + 4 = 0$ and perpendicular to the plane $\vec{r}.(2\hat{i}-\hat{j}+\hat{k}) + 8 = 0$. Hence find whether the plane thus obtained contains the line x-1 = 2y-4 = 3z - 12. 6 marks

OR

Find the vector and Cartesian equations of a line passing through (1, 2, -4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$

4ono.com 4ono.com 4ono.com 4ono.com

Buy solution: http://www.4ono.com/cbse-12th-maths-previous-year-solved-papers/